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Part 1. Introduction & Taxonomy
- Time series and graph neural networks: background
- Graph neural networks for time series analysis: an overview
- Framework and categorization
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• What are time series?

Introduction

Monash University 4https://www.investopedia.com/terms/t/timeseries.asp
Enev, M., Takakuwa, A., Koscher, K., & Kohno, T. (2016). Automobile Driver Fingerprinting. Proc. Priv. Enhancing Technol., 2016(1), 34-50.



• What are time series?

Introduction
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https://www.mongodb.com/basics/time-series-data-analysis



• What are graphs?

Introduction
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Bibliography Networks Knowledge Graphs Traffic Networks



• What are graph neural networks (GNNs)?

Introduction
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https://www.avenga.com/magazine/graph-neural-networks-and-graph-convolutional-networks/

Spatial GNNs



• What are graph neural networks (GNNs)?

Introduction
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Li, J., Guo, W., Liu, H., Chen, X., Yu, A., & Li, J. (2021). Predicting User Activity Intensity Using Geographic Interactions Based on Social Media Check-In Data. ISPRS International Journal of Geo-Information, 10(8), 555.

Spectral GNNs



• Graph neural networks for time series analysis (GNN4TS)

Introduction
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https://www.mongodb.com/basics/time-series-data-analysis
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• Graph neural networks for time series analysis (GNN4TS)
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• Graph neural networks for time series analysis (GNN4TS)

Introduction
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https://www.mongodb.com/basics/time-series-data-analysis



• Graph neural networks for time series analysis (GNN4TS)

Introduction
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In this example of wind farm, different analytical tasks
can be categorized into time series forecasting,
classification, anomaly detection, and imputation



• How to obtain the graph structures?

Introduction
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- To employ GNNs for time series analysis, it is implied that a graph structure must be provided

- However, not all time series data have readily available graph structures

Heuristic-based approaches Learning-based approaches

https://www.kdnuggets.com/2019/08/neighbours-machine-learning-graphs.html
https://www.linkedin.com/pulse/future-forensics-heuristic-approach-vidhura-sethu/



• Heuristic-based graphs

Introduction
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§ Spatial proximity: This approach defines the graph structure by considering the 
proximity between pairs of nodes based on, e.g., their geographical location.

𝑑!" denotes the shortest travel distance between node 𝑖 and 𝑗

§ Pairwise connectivity: The graph structure is determined by the connectivity between 
pairs of nodes, like that determined by transportation networks.



• Heuristic-based graphs

Introduction
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§ Pairwise similarity: This method constructs the graph by connecting nodes with 
similar attributes.

𝑥! and 𝑥" are two time series (variables), and .
denotes the Euclidean norm

§ Functional dependence: This approach defines the graph structure based on the 
functional dependence between pairs of nodes.

Other examples involve transfer entropy (TE) and
discrete phase lag index (DPLI)



• Learning-based graphs

Introduction

16Shang, C., Chen, J., & Bi, J. (2021). Discrete graph structure learning for forecasting multiple time series. In ICLR
Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020). Connecting the dots: Multivariate time series forecasting with graph neural networks. In KDD.

Embedding-based (e.g., MTGNN) Sampling-based (e.g., GTS)



Outline of GNN4TS
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General pipeline for time series analysis using graph neural networks



Outline of GNN4TS
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Task-oriented taxonomy of GNN4TS

Methodology-oriented taxonomy of GNN4TS



Part 2. GNNs for Time Series Analysis
- Time series analytical tasks: an overview
- Graph neural networks for time series analysis: 4 categories
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Time Series Analysis
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GNNs for time series forecasting GNNs for time series classification



Time Series Analysis
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GNNs for time series anomaly detection GNNs for time series imputation



GNNs for Time Series Forecasting
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• Modeling the inter-variable dependencies

§ Spectral GNNs, spatial GNNs, or a hybrid of both

• Modeling the inter-temporal dependencies

§ In the time or/and frequency domains

§ Recurrent models, convolution models, attention models, or hybrid models

• Forecasting architecture fusion

§ Discrete and continuous neural architectures

§ Spatial and temporal modules can be factorized or coupled



GNNs for Time Series Forecasting
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• Task: “S” and “L” denote short-
term and long-term forecasting

• Architecture: “D” and “C”
represent discrete and
continuous; “C” and “F” stand for
coupled and factorized

• Temporal module: “T” and “F”
denote time and frequency
domains; “R”, “C”, “A”, and “H”
are recurrent, convolutional,
attentional, and hybrid models

• Input graph: “R”, “O”, and “NR”
stand for required, optional, and
not required

• Graph heuristics: “SP”, “PC”,
“PS”, and “FD” are spatial
proximity, pairwise connectivity,
pairwise similarity, and
functional dependency23



GNNs for Time Series Forecasting

Monash University 24

• Modeling the inter-variable dependencies
§ Spectral GNNs (e.g., StemGNN) & Spatial GNNs (e.g., DCRNN)

• Modeling the inter-temporal dependencies
§ Time domain (e.g., DCRNN) & Frequency domain (e.g., StemGNN)
§ Recurrent models (e.g., DCRNN) & Convolution models (e.g., STGCN) & Attention

models (e.g., GMAN)

• Forecasting architecture fusion
§ Discrete factorized (e.g., MTGNN) & Continuous coupled (e.g., MTGODE)



GNNs for Time Series Forecasting

Monash University 25

• STGCN (Yu et al., 2018)

Yu, B., Yin, H., & Zhu, Z. (2018, July). Spatio-temporal graph convolutional networks: a 
deep learning framework for traffic forecasting. In Proceedings of the 27th International 
Joint Conference on Artificial Intelligence (pp. 3634-3640).

• Model architecture: discrete factorized

• Spatial module: ChebConv or GCN

• Temporal module: convolution-based

Weighted adjacency matrix



GNNs for Time Series Forecasting
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• DCRNN (Li et al., 2018)

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018, February). Diffusion Convolutional Recurrent 
Neural Network: Data-Driven Traffic Forecasting. In International Conference on Learning 
Representations.

• Model architecture: discrete coupled

• Spatial module: graph diffusion

• Temporal module: recurrent-based



GNNs for Time Series Forecasting
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• GMAN (Zheng et al., 2020)

Zheng, C., Fan, X., Wang, C., & Qi, J. (2020, April). Gman: A graph multi-attention network 
for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 
34, No. 01, pp. 1234-1241).

• Model architecture:
discrete coupled

• Spatial module: GAT

• Temporal module:
attention-based



GNNs for Time Series Forecasting
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• StemGNN (Cao et al., 2020)

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., ... & Zhang, Q. (2020). Spectral 
temporal graph neural network for multivariate time-series forecasting. Advances in 
neural information processing systems, 33, 17766-17778.

• Model architecture: discrete factorized

• Spatial module: ChebConv

• Temporal module: convolution-based
but in the frequency domain



GNNs for Time Series Forecasting
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• MTGNN (Wu et al., 2020)

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020, August). Connecting the dots: 
Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th 
ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753-763).

• Model architecture: discrete factorized

• Spatial module: mix-hop MPNN

• Temporal module: convolution-based



GNNs for Time Series Forecasting
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• MTGODE (Jin et al., 2022)

Jin, M., Zheng, Y., Li, Y. F., Chen, S., Yang, B., & Pan, S. (2022). Multivariate time series forecasting 
with dynamic graph neural odes. IEEE Transactions on Knowledge and Data Engineering.

• Model architecture: continuous coupled • Spatial module: GDEs • Temporal module: TDEs



GNNs for Time Series Classification
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• Univariate time series classification
§ Series-as-Graph: the core idea is to transform a univariate

time series into a graph to identify unique patterns

§ Series-as-Node: each time series sample in a given dataset
can be viewed as a node to construct a data graph

• Multivariate time series classification
§ This branch of methods maintains fundamental similarities

with its univariate counterpart

§ However, it introduces an additional layer of complexity:
the necessity to capture the inter-variable dependencies



GNNs for Time Series Classification
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• Task: “M” and “U” denote univariate and multivariate time series classification

• Temporal module: “T” and “F” denote time and frequency domains; “R”, “C”, “A”, and “H” are recurrent,
convolutional, attentional, and hybrid models

• Input graph: “R”, “O”, and “NR” stand for required, optional, and not required

• Graph heuristics: “SP”, “PC”, “PS”, and “FD” are spatial proximity, pairwise connectivity, pairwise similarity,
and functional dependency

32

• Learned relations: “S” and “D” denote static and dynamic graph structures



GNNs for Time Series Classification
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• Time2Graph+ (Cheng et al., 2021)

• Each time series is transformed 
into a graph where shapelets
form nodes and transition 
probabilities create edges

• GAT is then leveraged along with 
a graph pooling operation to 
derive the global representation 
of the time series

Cheng, Z., Yang, Y., Jiang, S., Hu, W., Ying, Z., Chai, Z., & Wang, C. (2021). Time2Graph+: 
Bridging time series and graph representation learning via multiple attentions. IEEE 
Transactions on Knowledge and Data Engineering.



GNNs for Time Series Classification
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• SimTSC (Zha et al., 2022)

• Time series nodes are connected using edges, which are defined by their pairwise DTW distance, to construct a graph

• A backbone network is initially employed to encode each time series into a feature vector

Zha, D., Lai, K. H., Zhou, K., & Hu, X. (2022). Towards similarity-aware time-series 
classification. In Proceedings of the 2022 SIAM International Conference on Data Mining 
(SDM) (pp. 199-207). Society for Industrial and Applied Mathematics.

• Subsequently, a standard GNN operation is implemented to derive node (time series) representations, capturing the 
similarities between the series, for better classification



GNNs for Time Series Classification
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• RainDrop (Zhang et al., 2021)

Zhang, X., Zeman, M., Tsiligkaridis, T., & Zitnik, M. (2021, October). Graph-
Guided Network for Irregularly Sampled Multivariate Time Series. In International 
Conference on Learning Representations.

• To classify irregularly sampled multivariate time series
where subsets of variables have missing values at certain 
timestamps, Raindrop adaptively learns a “sensor graph”

• It then dynamically interpolates missing observations within 
the embedding space, based on any available recorded data



GNNs for Time Series Anomaly Detection
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• Discrepancy framework for anomaly detection

§ Reconstrction discrepancy: the reconstructed error should 
be low during normal periods, but high during anomalous 
periods

§ Forecast discrepancy: the forecast error should be low 
during normal periods, but high during anomalous periods. 
Here the backbone is substituted with a GNN forecaster 
that is trained to predict a one-step-ahead forecast

§ Relational discrepancy: the relationship between variables
(e.g., each time series) should exhibit significant shifts 
from normal to anomalous periods

§ Hybrid and other discrepancy



GNNs for Time Series Anomaly Detection
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• Strategy: “RC”, “FC”, “RL”, and “CL” indicate the reconstruction, forecast, relational,
and class discrepancies

37



GNNs for Time Series Anomaly Detection
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• GDN (Deng & Hooi, 2021)

Deng, A., & Hooi, B. (2021, May). Graph neural network-based anomaly detection in 
multivariate time series. In Proceedings of the AAAI conference on artificial intelligence 
(Vol. 35, No. 5, pp. 4027-4035).

One-step-ahead
forecastingForecast discrepancy



GNNs for Time Series Anomaly Detection
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• VGCRN (Chen et al., 2022)

Chen, W., Tian, L., Chen, B., Dai, L., Duan, Z., & Zhou, M. (2022, June). Deep variational 
graph convolutional recurrent network for multivariate time series anomaly detection. 
In International Conference on Machine Learning (pp. 3621-3633). PMLR.

Forecast
discrepancy

Reconstruct
discrepancy



GNNs for Time Series Anomaly Detection
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• CST-GL (Zheng et al., 2023)

Zheng, Y., Koh, H. Y., Jin, M., Chi, L., Phan, K. T., Pan, S., ... & Xiang, W. (2023). 
Correlation-aware Spatial-Temporal Graph Learning for Multivariate Time-series 
Anomaly Detection. arXiv preprint arXiv:2307.08390.

Forecast
discrepancy

Detection
interpretation



GNNs for Time Series Imputation

Monash University 41

• Task categorization

§ In-sample imputation: this involves filling in missing 
values within the given time series data

§ Out-of-sample imputation: this predicts missing 
values in disjoint sequences

• Methodology categorization

§ Deterministic imputation: this provides a single best estimate 
for the missing values

§ Probabilistic imputation: this accounts for the uncertainty in 
the imputation and provides a distribution of possible values



GNNs for Time Series Imputation
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• Inductiveness: this indicates whether a method can generalize to unseen nodes



GNNs for Time Series Anomaly Detection
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• GRIN (Cini et al., 2021)

Cini, A., Marisca, I., & Alippi, C. (2021). Filling the g_ap_s: Multivariate time series imputation by 
graph neural networks. arXiv preprint arXiv:2108.00298.

One-layer MPNNMPGRU

Deterministic
imputations



GNNs for Time Series Anomaly Detection
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• PriSTI (Liu et al., 2023)

Liu, M., Huang, H., Feng, H., Sun, L., Du, B., & Fu, Y. (2023). PriSTI: A Conditional 
Diffusion Framework for Spatiotemporal Imputation. arXiv preprint arXiv:2302.09746.

Probabilistic imputations

• PriSTI leverages the diffusion
model for spatio-temporal
imputation



Part 3. Applications & Future
Directions
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• Smart Transportation

Applications

Monash University 46Sun, B., Zhao, D., Shi, X., & He, Y. (2021). Modeling global spatial–temporal graph 
attention network for traffic prediction. IEEE Access, 9, 8581-8594.



• Environment & Sustainable Energy

Applications
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Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., ... & 
Battaglia, P. (2022). GraphCast: Learning skillful medium-range global weather forecasting. arXiv 
preprint arXiv:2212.12794.



• Healthcare

Applications
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Jia, Z., Lin, Y., Wang, J., Zhou, R., Ning, X., He, Y., & Zhao, Y. (2020, July). 
GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks 
for Sleep Stage Classification. In IJCAI (Vol. 2021, pp. 1324-1330).



• Fraud Detection

Applications
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Cheng, D., Wang, X., Zhang, Y., & Zhang, L. (2020). Graph neural network for fraud 
detection via spatial-temporal attention. IEEE Transactions on Knowledge and 
Data Engineering, 34(8), 3800-3813.

Transaction payments



• Pre-training, transfer learning, and large models

Future Directions
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Language & Other
Foundation Models

Training

Repurposing

General Purposes

Domain-Specific Applications

Forecasting Classification

Imputation Anomaly
Detection…

Climate
Modeling

Clinical
Q&A

Urban
Computing

Video
Reasoning…

Time Series Data

Spatio-Temporal Data
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• Uncertainty quantification

Future Directions

Monash University 51
Wen, H., Lin, Y., Xia, Y., Wan, H., Zimmermann, R., & Liang, Y. (2023). Diffstg: Probabilistic 
spatio-temporal graph forecasting with denoising diffusion models. arXiv preprint 
arXiv:2301.13629.



• Scalability

Future Directions

Monash University 52Liu, X., Xia, Y., Liang, Y., Hu, J., Wang, Y., Bai, L., ... & Zimmermann, R. (2023). LargeST: A 
Benchmark Dataset for Large-Scale Traffic Forecasting. arXiv preprint arXiv:2306.08259.



Part 4. Conclusion
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• What we have covered?

§ Taxonomies of graph neural networks for time series analysis (GNN4TS)

Conclusion
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• What we have covered?

§ An overview of graph neural networks for time series analysis (GNN4TS)

Conclusion

Monash University 55



• What we have covered?

§ Applications & Future directions of GNN4TS

Conclusion
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Thank you 
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Paper: https://arxiv.org/pdf/2307.03759.pdf

GitHub Page: https://github.com/KimMeen/Awesome-GNN4TS


