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Graph Anomaly Detection
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Graph Self-Supervised Learning

Graph Self-Supervised Learning(Semi-)Supervised Graph Learning
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Contrastive Graph Anomaly Detection

The mismatch between a node and its surrounding contextual information reflects its abnormality

Input: An unlabeled 
attributed graph

Output of downstream task: 
Inferring node anomaly scores

Pretext 
Tasks

4



ANEMONE

• Given a target node, two contrastive pretext tasks are created to predict the anomaly score of this node

• A patch-level task contrasts the embedding of a masked target node with the mapping of its raw information  

• A context-level task contrasts a target node with the contextual embedding obtained from its surrounding neighbors

• Finally, the abnormality of a node is statistically estimated by referring two contrastive scores
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Patch-Level Contrastiveness

• Firstly, the masked target node embedding is obtained via a GCN parameterized by 𝜃: 

• Then, the target node representation is calculated via a MLP:

• Finally, we maximize their agreement based on the assumption that most nodes in a graph is NOT anomalies
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Context-Level Contrastiveness

• Then, the target node representation is calculated in the same way but with another MLP

• Firstly, the contextual embedding of a target node is obtained via a GCN parameterized by 𝜙: 

• Finally, we maximize their mutual information with another estimator:   

Thus, our overall objective is minimizing this contrastive loss: 
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Statistical Anomaly Estimator

• For a target node 𝑣!, we generate 𝑅 ego-nets for patch- and 
context-level contrastive learning

Positive scores Negative scores

• We denote the base anomaly score as follows: 

• The final anomaly score is calculated via:
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Experiments
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