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MERIT: Multi-ScalE ContRastive Slamese NeTworks

Online Network
G1 =X, A) Encoder Predictor

- ool o 1 o |
‘<'\°& ;L“! \””J; I]Iﬁ

.........

Graph View 1

ty~71 : |
- 1 ' i B -
1 ' Momentum <—> Cross-view contrastiveness
: Updating <—> Cross-network contrastiveness
H i Ve

ty~T ! 5 N -.<:‘\0
H | o -
Graph View 2 ! 5 7 "

i ;Stop Gradient
e syl £ )

= - P e ’ g P
G2 = (X2,47) B g —
92
\ Target Network / U )
Graph Augmentations Siamese Graph Neural Networks Multi-Scale Contrastive Learning

A multi-scale graph contrastive schema with self-knowledge
distillation is proposed to train the (online) graph encoder.
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Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Amazon Photo 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6,805 15
Dataset statistics
Method CiteSeer Amazon Photo
MERIT 74.0 0.7 87.4 +0.2
MERIT w/o cross-network  73.8 0.4 87.0 +£0.1
MERIT w/o cross-view 73.6 0.4 87.1 +£0.3

Ablation study on CiteSeer and
Amazon Photo

(c) MERIT

(b) DGI

(a) GCN

t-SNE embeddings of nodes in CiteSeer

Experiments

MONASH

@ University
Information Used Method Cora CiteSeer PubMed Amazon Photo  Coauthor CS
AY LP 68.0 45.3 63.0 67.81+0.0 74.3 +0.0
X,AY Chebyshev 81.2 69.8 74.4 74.3+0.0 91.5 0.0
X,AY GCN 81.5 70.3 79.0 87.3+1.0 91.8 +0.1
X,AY GAT 83.0 £0.7 725+0.7 79.04+0.3 86.2 +1.5 90.5 0.7
X,AY SGC 81.0+0.0 719=+0.1 78.94+0.0 86.4 +0.0 91.0 +0.0
X, A DGI 81.74+0.6 71.5+0.7 77.3+0.6 83.1 0.5 90.0 0.3
X, A GMI 82.74+0.2 73.0+0.3 80.1 +0.2 85.1 +0.1 91.0 +0.0
X, A MVGRL 829 +0.7 72.6 0.7 79.44+0.3 87.3 +0.3 91.3 +0.1
X, A GRACE 80.0+04 71.7+0.6 79.5+1.1 81.8 +1.0 90.1 +0.8
X, A MERIT 83.1 +-0.6 74.0 +0.7 80.11+0.4 87.4 +0.2 924 +0.4
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Classification accuracies on five benchmark datasets
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