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Time Series Are Everywhere

2KDD‘24 Tutorial of Foundation Models for Time Series

• What are time series? • Time series are everywhere

(Figures in this page are generated by DALL·E)



Time Series Data
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• What are time series?

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024). Foundation models for time series analysis: A tutorial and survey. In KDD’24



Time Series Analysis
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• Forecasting

ETA Disease propagation Electricity demand Global Weather

Observations

Forecasts
• Long-term planning

• Early warning

• Better management

(Figures in this page are generated by DALL·E)



Time Series Analysis
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• Classification

ECG diagnose Traffic condition Anomaly detection AQI category

https://www.aeon-toolkit.org/en/stable/examples/classification/classification.html



Time Series Analysis

6KDD‘24 Tutorial of Foundation Models for Time Series

• Generation

Simulation Anonymization Data augmentation Imputation

Model

“A cold front moved through the area on Day 4, lasting until Day 6”

• Better planning and management

• Privacy preserving

• More data and applications



Timeline

7KDD‘24 Tutorial of Foundation Models for Time Series

https://ise.thss.tsinghua.edu.cn/~mlong/doc/foundation-models-for-time-series-analysis-gaitc23.pdf

• Before 2022

Deep Time Series Models

Statistic Models

Holt-Winter

1960

ARIMA

1982

2012

LSTM

2018

TCN

2019

Graph WaveNet

DCRNN

TimeGAN

2020

DeepAR

MTGNN

2021

Autoformer

Informer

2022

PatchTST
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CSDI
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• After 2022

2022

TF-C, TS2Vec

2022

STEP, SPGCL

FourCastNet

2023

TS2Vec

OFA, LLM4TS

TimesNet, DiffSTG

2023

ClimaX

TFM (GGT)

Pangu-Weather

Voice2Series

NYUTron

LLM-Mob

TimeGPT-1

2024

Time-LLM, Lag-Llama

UniTS, UniTime, Timer

Moirai, Chronos, TimesFM

Moment, TTMs

2024

UniST

GeoFM

OpenCity

ControlTraj

UrbanGPTAuxMobLCast
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• After 2022
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Scale & Capability



Deep Time Series Models
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• Architecture

Transformer Models Non-Transformer Models Diffusion Models

- Encoder-only

- Decoder-only

- RNNs - TCNs- MLP - Unconditioned

- Conditioned- …

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024). Foundation models for time series analysis: A tutorial and survey. In KDD’24



Deep Time Series Models
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• Pipeline

Task-specific training

Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML’24.

Adaptationor

Pre-training

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024). Foundation models for time series analysis: A tutorial and survey. In KDD’24
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• Three key aspects

Edwards, T. D., Alvey, J., Alsing, J., Nguyen, N. H., & Wandelt, B. D. (2024). Scaling-laws for Large Time-series Models. arXiv preprint arXiv:2405.13867.

- Model parameters (e.g., 10K to 100M)

- Training tokens (e.g., 10M to 8B)

- Computation (e.g., PF-day budget)

“Large time series models scales 

approximately as a power law with all

three quantities” -- Edwards et al.



Transformer-based Models
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Patchify

Input

Embedding

Backbone

Prediction

Das, A., Kong, W., Sen, R., & Zhou, Y. A decoder-only foundation model for time-series forecasting. In ICML’24.

(Decoder-only)



Transformer-based Models
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Das, A., Kong, W., Sen, R., & Zhou, Y. A decoder-only foundation model for time-series forecasting. In ICML’24.

Average scaled MAE on Monash datasets 

for three different TimesFM model sizes

(a) Forecasting performance (b) Scalability

(c) Showcases



Transformer-based Models

15Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the langua ge of time series. arXiv preprint arXiv:2403.07815.

Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. arXiv preprint arXiv:1909.04400.



Transformer-based Models

16Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the langua ge of time series. arXiv preprint arXiv:2403.07815.

Example: GPT-2

Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. arXiv preprint arXiv:1909.04400.



Transformer-based Models
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Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.
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Transformer-based Models
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Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. Unified Training of Universal Time Series Forecasting Trans formers. In ICML’24.

Patchify

Input

Embedding

Backbone

Prediction

(Encoder-only)



Transformer-based Models
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Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. Unified Training of Universal Time Series Forecasting Trans formers. In ICML’24.

(a) Probabilistic forecasting

(b) Long sequence forecasting



Transformer-based Models
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Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. MOMENT: A Family of Open Time-series Foundation Models. In ICML’24.

(b) Scalability

(a) Performance



Non-Transformer Models

21Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., & Long, M. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In ICLR’23.

TimesNet is stacked by TimesBlocks in a residual way

TimesBlock learns representations in 2D space

1️⃣ 1D to 2D 2️⃣ 2D representation learning3️⃣ 2D to 1D

Unify intraperiod- and interperiod-variations in 2D space by reshape

https://ise.thss.tsinghua.edu.cn/~mlong/doc/foundation-models-for-time-series-analysis-gaitc23.pdf



Non-Transformer Models

22Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., & Long, M. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In ICLR’23.

https://ise.thss.tsinghua.edu.cn/~mlong/doc/foundation-models-for-time-series-analysis-gaitc23.pdf

(a) Performance overview (b) Model generality



Non-Transformer-based Models

23KDD‘24 Tutorial of Foundation Models for Time Series
Ekambaram, V., Jati, A., Dayama, P., Mukherjee, S., Nguyen, N. H., Gifford, W. M., ... & Kalagnanam, J. (2024). Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series. CoRR.



Non-Transformer-based Models
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Ekambaram, V., Jati, A., Dayama, P., Mukherjee, S., Nguyen, N. H., Gifford, W. M., ... & Kalagnanam, J. (2024). Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series. CoRR.

Zero-shot forecast-improvement (f-imp) and model size-improvement (s-imp) 

of TTM over Moirai and TimesFM.

Zero-shot forecast-improvement (f-imp) and model size-improvement (s-imp) 

of TTM over Chronos and Lag-Llama.

Computational improvement of TTM w.r.t. existing TS pre-trained 

models. Inference time per-batch in GPU and CPU, total parameters 

(Params), and maximum GPU memory usage (MEM) are reported.



Diffusion Models
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Yuan, X., & Qiao, Y. Diffusion-TS: Interpretable Diffusion for General Time Series Generation. In ICLR’24

• Generating time series data using a diffusion model that maps Gaussian vectors to signals resembling those in a given dataset

…



Diffusion Models
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Yuan, X., & Qiao, Y. Diffusion-TS: Interpretable Diffusion for General Time Series Generation. In ICLR’24
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Pre-training Pipelines
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Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML’24

Data Pool

• The model observes sequences from different periods and different datasets

• Increasing the pre-training difficulty and directing more attention to the temporal variation

• S3 does not require time alignment, and single-series sequences are regarded as standard sentences of time series



Pre-training Pipelines
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Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML’24
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Pre-training Pipelines
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Liu, X., Hu, J., Li, Y., Diao, S., Liang, Y., Hooi, B., & Zimmermann, R. (2024, May). Unitime: A language-empowered unified model for cross-domain time series forecasting. In WWW’24

• Cross-domain learning + Domain Instructions

• Construct batches of data by randomly selecting instances from the data pool

• Data pool consists of training data across 8 different time series dataset



Pre-training Pipelines
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Liu, X., Hu, J., Li, Y., Diao, S., Liang, Y., Hooi, B., & Zimmermann, R. (2024, May). Unitime: A language-empowered unified model for cross-domain time series forecasting. In WWW’24



Pre-training Pipelines
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Yuan, Y., Ding, J., Feng, J., Jin, D., & Li, Y. (2024). UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction. In KDD’24.

• Masking reconstruction • Prompt learning enhances generalization ability



Pre-training Pipelines
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Yuan, Y., Ding, J., Feng, J., Jin, D., & Li, Y. (2024). UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction. In KDD’24.

(a) Short-term prediction

(b) Long-term prediction

(c) Zero/few-shot performance



Adaptation
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Gruver, N., Finzi, M., Qiu, S., & Wilson, A. G. (2024). Large language models are zero-shot time series forecasters. In NeurIPS’23



Adaptation
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Gruver, N., Finzi, M., Qiu, S., & Wilson, A. G. (2024). Large language models are zero-shot time series forecasters. In NeurIPS’23

(b) Left & Middle: prob. forecasting; Right: sample efficiency

(a) Forecasting performance

(c) Visualization



Adaptation
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Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J., Shi, X., ... & Wen, Q. (2024, May). Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. In ICLR’24

Reprogram GIFs - Find  Share on GIPHY

https://www.google.com/url?sa=i&url=https%3A%2F%2Fgiphy.com%2Fexplore%2Freprogram&psig=AOvVaw2MlOuCboNrwA6gLLeSpnJx&ust=1724830244870000&source=images&cd=vfe&opi=89978449&ved=0CBMQjRxqFwoTCNDcncLTlIgDFQAAAAAdAAAAABAc


Adaptation

36
Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J., Shi, X., ... & Wen, Q. (2024, May). Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. In ICLR’24

(i) Long-term forecasting (ii) Short-term forecasting

(iii) Few-shot forecasting (iv) Zero-shot forecasting



Adaptation
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Li, Z., Xia, L., Tang, J., Xu, Y., Shi, L., Xia, L., ... & Huang, C. (2024). Urbangpt: Spatio-temporal large language models. In KDD’24

• Enabling LLMs to comprehend spatial-temporal dependencies in data for downstream urban tasks

• Spatio-temporal encoder + instruction-tuning = UrbanGPT



Adaptation
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Li, Z., Xia, L., Tang, J., Xu, Y., Shi, L., Xia, L., ... & Huang, C. (2024). Urbangpt: Spatio-temporal large language models. In KDD’24

(a) Forecasting performance (b) Showcase



Single Modality
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Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. Unified Training of Universal Time Series Forecasting Trans formers. In ICML’24

• Moirai (ICML’24)



Single Modality
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Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the langua ge of time series. arXiv preprint arXiv:2403.07815.

• Chronos (arXiv’24)



Single Modality
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Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML’24

• Timer (ICML’24)

• Unified Time Series Dataset (UTSD) encompasses seven domains with up to 1B time points (UTSD-12G)

• Data complexity is measured by Augmented Dickey-Fuller (ADF) test (that reflects the degree of non-stationarity)



Single Modality
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Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML’24

• UniST (KDD’24)



Multimodality
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Liu, H., Xu, S., Zhao, Z., Kong, L., Kamarthi, H., Sasanur, A. B., ... & Prakash, B. A. (2024). Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis. arXiv preprint arXiv:2406.08627.

• 1️⃣ Gather numerical data from reputable sources

1️⃣

• 2️⃣ Textual data is collected for fine-grained matching with the numerical data

2️⃣

• 3️⃣ Binary timestamps (start, end) are leveraged to mark the start and end dates as a 

universal temporal alignment method between numerical and textual data

3️⃣



Multimodality
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Liu, H., Xu, S., Zhao, Z., Kong, L., Kamarthi, H., Sasanur, A. B., ... & Prakash, B. A. (2024). Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis. arXiv preprint arXiv:2406.08627.



Multimodality
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Merrill, M. A., Tan, M., Gupta, V., Hartvigsen, T., & Althoff, T. (2024). Language Models Still Struggle to Zero-shot Reason about Time Series. arXiv preprint arXiv:2404.11757.

• We can ask the model to “imagine a scenario” that would produce a time series

• We then yield the following data for each scenario: caption, metadata, characteristics and a

script for time series generation



Application
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• Global Weather Forecasting

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., & Grover, A. (2023). ClimaX: A foundation model for weather and climate. In ICML’23

• Left: ClimaX is built as a foundation model for diverse weather and climate modeling tasks

• Right: Pretraining phase of ClimaX. Variables are encoded using variable-separate tokenization, and subsequently aggregated 

using variable aggregation. Together with position embedding and lead time embedding those are fed to the ViT backbone.



Application
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• Financial Agent

Zhang, W., Zhao, L., Xia, H., Sun, S., Sun, J., Qin, M., ... & An, B. (2024). FinAgent: A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist. In KDD’24



Where Are We
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Model Scale

Data Scale

Capability



Tokenization
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• Time series tokenization is not easy

Patchify Quantization

Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In ICLR’23

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. ( 2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.



Normalization

50

• Normalization is overlooked

Ekambaram, V., Jati, A., Dayama, P., Mukherjee, S., Nguyen, N. H., Gifford, W. M., ... & Kalagnanam, J. (2024). Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series. CoRR.

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.

Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML’24



Data Modality
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• Time series reasoning is promising

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J., Shi, X., ... & Wen, Q. (2024, May). Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. In ICLR’24

Merrill, M. A., Tan, M., Gupta, V., Hartvigsen, T., & Althoff, T. (2024). Language Models Still Struggle to Zero-shot Reason about Time Series. arXiv preprint arXiv:2404.11757.



Scaling Laws & Capabilities

52Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

• Do we have enough data to feed our model?• Are Transformers better than LSTMs?

• Clear and robust scaling laws in language modeling
• Big model that is undertrained or small 

model that is well trained?

https://stanford-cs324.github.io/winter2022/assets/pdfs/Scaling%20laws%20pdf.pdf



Scaling Laws & Capabilities

53
Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682.

• Large models but why?

KDD‘24 Tutorial of Foundation Models for Time Series



Scaling Laws & Capabilities

54

• All we know so far…

?Edwards, T. D., Alvey, J., Alsing, J., Nguyen, N. H., & Wandelt, B. D. (2024). Scaling-laws for Large Time-series Models. arXiv preprint arXiv:2405.13867.

- Model parameters (e.g., 10K to 100M)

- Training tokens (e.g., 10M to 8B)

- Computation (e.g., PF-day budget)

“Large time series models scales 

approximately as a power law with all

three quantities” -- Edwards et al.

…
KDD‘24 Tutorial of Foundation Models for Time Series
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Thank You
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