

Time Series Foundation Models

Ming Jin Assistant Professor Griffith University https://mingjin.dev/

(Generated by DALL·E)

Time Series Are Everywhere

• What are time series?

• Time series are everywhere

Time Series Data

• What are time series?

KDD'24 Tutorial of Foundation Models for Time Series

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024). Foundation models for time series analysis: A tutorial and survey. In KDD'24

Time Series Analysis

• Forecasting

ETA

Disease propagation

Electricity demand

Global Weather

- Long-term planning •
- Early warning
- Better management •

Time Series Analysis

Classification

KDD'24 Tutorial of Foundation Models for Time Series

Time Series Analysis

Generation

- Better planning and management
- Privacy preserving
- More data and applications

Model

"A cold front moved through the area on Day 4, lasting until Day 6"

Timeline

• Before 2022

KDD'24 Tutorial of Foundation Models for Time Series

https://ise.thss.tsinghua.edu.cn/~mlong/doc/foundation-models-for-time-series-analysis-gaitc23.pdf

Timeline

Timeline

Scale & Capability

Deep Time Series Models

• Architecture

Transformer Models

- Encoder-only
- Decoder-only

Non-Transformer Models

- RNNs - MLP - TCNs

Diffusion Models

- Unconditioned
- Conditioned

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024). Foundation models for time series analysis: A tutorial and survey. In KDD'24

- . . .

Deep Time Series Models

• Pipeline

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., ... & Wen, Q. (2024). Foundation models for time series analysis: A tutorial and survey. In KDD'24 Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML'24.

Scaling Laws

- Three key aspects
 - Model parameters (e.g., 10K to 100M)
 - Training tokens (e.g., 10M to 8B)
 - Computation (e.g., PF-day budget)

"Large time series models scales approximately as a power law with all three quantities" -- Edwards et al.

KDD'24 Tutorial of Foundation Models for Time Series

(a) Forecasting performance

(c) ETT (Horizons 96 and 192) (Zhou

nn5_daily Ex.5, Monash

ground truth

(b) Scalability Scaled MAE 0.2 TON 1th

Average scaled MAE on Monash datasets for three different TimesFM model sizes

— TimesFM(ZS)

KDD'24 Tutorial of Foundation Models for Time Series

nn5_daily Ex.5, Monash

— Ilmtime(ZS)

Inference

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815. Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models.arXiv preprint arXiv:1909.04400.

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815. Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models.arXiv preprint arXiv:1909.04400.

In Domain (WQL) In Domain (MASE) Zero Shot (WQL) ---- Zero Shot (MASE) 0.95 **⊕** 0.90 Scol 0.85 **0** 0.80 0.75 o.75 0.70 **Ď** 0.65 ¥ 0.60 0.55 20M 46M 200M 710M

Benchmark (Metric)

Model Size

KDD'24 Tutorial of Foundation Models for Time Series

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.

500

500

500

500

600

60

600

600

KDD'24 Tutorial of Foundation Models for Time Series

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. Unified Training of Universal Time Series Forecasting Transformers. In ICML'24.

(a) Probabilistic forecasting

			Zero-shot			Ful	l-shot		Ba	seline
		MOIRAI _{Small}	MOIRAIBase	MOIRAILarge	PatchTST	TiDE	TFT	DeepAR	AutoARIMA	Seasonal Naive
Electricity	CRPS	0.072	0.055	0.050	0.052±0.00	0.048±0.00	0.050±0.00	0.065±0.01	0.327	0.070
Electricity	MSIS	7.999	6.172	5.875	5.744 ± 0.12	5.672±0.08	6.278 ± 0.24	6.893 ± 0.82	29.412	35.251
	CRPS	0.471	<u>0.419</u>	0.406	$0.518{\scriptstyle\pm}0.09$	$0.420{\pm}0.00$	$0.446{\scriptstyle\pm}0.03$	$0.431{\pm}0.01$	1.055	0.512
Solar	MSIS	8.425	<u>7.011</u>	6.250	8.447 ± 1.59	13.754 ± 0.32	8.057 ± 3.51	11.181 ± 0.67	25.849	48.130
	CRPS	0.103	0.093	0.098	$\underline{0.082{\pm}0.01}$	$\textbf{0.077}{\pm}\textbf{0.00}$	$0.087{\pm}0.00$	$0.121{\pm}0.00$	0.124	0.151
Walmart	MSIS	9.371	8.421	8.520	$6.005{\pm}0.21$	6.258 ± 0.12	$8.718{\scriptstyle\pm}0.10$	$12.502{\pm}0.03$	9.888	49.458
	CRPS	0.049	0.041	0.051	$0.059{\pm}0.01$	$0.054{\pm}0.00$	$\underline{0.043{\pm}0.00}$	$0.132{\pm}0.11$	0.252	0.068
Weather	MSIS	5.236	<u>5.136</u>	4.962	$7.759{\scriptstyle\pm}0.49$	8.095 ± 1.74	7.791 ± 0.44	21.651 ± 17.34	19.805	31.293
	CRPS	0.173	0.116	0.112	$0.112{\pm}0.00$	$0.110{\pm}0.01$	0.110 ± 0.01	$0.108{\pm}0.00$	0.589	0.257
Istanbul Traffic	MSIS	5.937	4.461	4.277	$3.813{\pm}0.09$	$4.752{\pm}0.17$	4.057 ± 0.44	4.094 ± 0.31	16.317	45.473
	CRPS	0.048	0.040	0.036	$0.054 {\pm} 0.01$	$0.046 {\pm} 0.01$	$\underline{0.039{\pm}0.00}$	$0.066 {\pm} 0.02$	0.116	0.085
Turkey Power	MSIS	7.127	<u>6.766</u>	6.341	$8.978{\scriptstyle\pm}0.51$	$8.579{\pm}0.52$	7.943 ± 0.31	$13.520{\pm}1.17$	14.863	36.256

(d) Turkey Power-2

(b) Long sequence forecasting

			Zero-shot					Full-shot				
		MOIRAI _{Small}	MOIRAI _{Base}	MOIRAILarge	iTransformer	TimesNet	PatchTST	Crossformer	TiDE	DLinear	SCINet	FEDformer
ETTh1	MSE MAE	0.400 0.424	$\frac{0.434}{0.438}$	0.510 0.469	0.454 0.448	0.458 0.450	0.469 0.455	0.529 0.522	0.541 0.507	0.456 0.452	0.747 0.647	0.44 0.46
ETTh2	MSE MAE	0.341 <u>0.379</u>	$\frac{0.345}{0.382}$	0.354 0.376	0.383 0.407	0.414 0.497	0.387 0.407	0.942 0.684	0.611 0.550	0.559 0.515	0.954 0.723	0.437 0.449
ETTm1	MSE	0.448	0.381	0.390	0.407	0.400	<u>0.387</u>	0.513	0.419	0.403	0.486	0.448
	MAE	0.409	0.388	<u>0.389</u>	0.410	0.406	0.400	0.495	0.419	0.407	0.481	0.452
ETTm2	MSE	0.300	0.272	<u>0.276</u>	0.288	0.291	0.281	0.757	0.358	0.35	0.571	0.305
	MAE	0.341	<u>0.321</u>	0.320	0.332	0.333	0.326	0.611	0.404	0.401	0.537	0.349
Electricity	MSE	0.233	0.188	<u>0.188</u>	0.178	0.193	0.216	0.244	0.252	0.212	0.268	0.214
	MAE	0.320	0.274	<u>0.273</u>	0.270	0.295	0.304	0.334	0.344	0.3	0.365	0.327
Weather	MSE	<u>0.242</u>	0.238	0.259	0.258	0.259	0.259	0.259	0.271	0.265	0.292	0.309
	MAE	<u>0.267</u>	0.261	0.275	0.278	0.287	0.281	0.315	0.320	0.317	0.363	0.36

KDD'24 Tutorial of Foundation Models for Time Series

KDD'24 Tutorial of Foundation Models for Time Series

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. MOMENT: A Family of Open Time-series Foundation Models. In ICML'24.

Non-Transformer Models

TimesNet is stacked by TimesBlocks in a residual way

TimesBlock learns representations in 2D space

1 1D to 2D 2 2D representation learning 3 2D to 1D

- ✓ Intraperiod: adjacent area, short-term variations
- ✓ Interperiod: same phase in adjacent periods, long-term variations

Unify intraperiod- and interperiod-variations in 2D space by reshape

With temporal 2D-variations, we can

✓ Unify intraperiod- interperiod-variations

✓ Learn representations by 2D kernels

Non-Transformer Models

(a) Performance overview

(b) Model generality

23

KDD'24 Tutorial of Foundation Models for Time Series

Data	TTM _B	TTM_E	TTM _A	Moirai _s	Moirai _B	Moirai _L	TimesFM
ETTH1	0.394	0.404	0.4	0.4	0.434	0.51	0.479
ETTH2	0.345	0.335	0.333	0.341	0.346	0.354	0.403
ETTM1	0.386	0.38	0.362	0.448	0.382	0.39	0.429
ETTM2	0.281	0.271	0.252	0.3	0.272	0.276	0.334
Weather	0.237	0.238	0.231	0.242	0.238	0.26	-
Electricity	0.205	0.194	0.192	0.233	0.188	0.188	-
Size	1M	4 M	5M	14M	91M	311M	200M
TTM _B	f-imp(%	%) s-im	p(X)	$6\% \uparrow 14X \uparrow$	$1\% \downarrow 91X\uparrow$	4% ↑ 311X ↑	15% \uparrow 200X \uparrow
TTM_E	f-imp(%	%) s-im	p(X)	7% ↑4X ↑	$1\% \uparrow 23X \uparrow$	6% ↑78X ↑	$16\% \uparrow 50X \uparrow$
TTM $_A$	f-imp(%	%) s-im	p(X)	10% \uparrow 3X \uparrow	$4\% \uparrow 18X \uparrow$	9% ↑ 62X ↑	$ $ 19% \uparrow 40X \uparrow $ $

Zero-shot forecast-improvement (f-imp) and model size-improvement (s-imp) of TTM over Moirai and TimesFM.

Data	TTM _B	TTM_E	TTM _A	Chronos _T	Chronos _S	Chronos _B	Chronos _L	Lag-llama
ETTH1	0.204	0.227	0.214	0.311	0.302	0.252	0.266	0.334
ETTH2	0.131	0.151	0.162	0.177	0.16	0.164	0.155	0.168
ETTM1	0.206	0.239	0.19	0.839	0.486	0.49	0.538	0.842
ETTM2	0.124	0.128	0.117	0.206	0.174	0.19	0.187	0.308
Weather	0.039	0.032	0.043	0.043	0.046	0.03	0.033	0.126
Electricity	0.335	0.351	0.349	0.423	0.377	0.344	0.339	0.393
Traffic	0.246	0.24	0.244	0.291	0.3	0.28	0.269	0.243
Size	1M	4M	5M	8M	46M	201M	709M	3M
TTM _B	f-imp(%	%) s-im	p(X)	$32\% \uparrow 8X \uparrow$	$26\% \uparrow 46X \uparrow$	$17\% \uparrow 201X \uparrow$	18% ↑709X ↑	$40\% \uparrow 3X \uparrow$
TTM _E f-imp(%) s-imp(X)				$ 30\% \uparrow 2X\uparrow$	24% \uparrow 12X \uparrow	15% ↑ 50X ↑	16% ↑ 177X ↑	37% ↑1X↓
TTM _A f-imp(%) s-imp(X)			p(X)	$28\% \uparrow 2X \uparrow$	22% ↑ 9 X ↑	$12\% \uparrow 40X \uparrow$	13% \uparrow 142X \uparrow	$ $ 37% \uparrow 2X \downarrow

Zero-shot forecast-improvement (f-imp) and model size-improvement (s-imp) of TTM over Chronos and Lag-Llama.

Model	GPU TIME (ms)	Params (M)	MEM (GB)	CPU TIME (s)
TTM _B	4.7	0.8	0.06	0.01
Chronos _B	1395	201	16	2340
(2024)	(298X)	(251X)	(267X)	(239KX)
Chronos _L	1393	709	41	2352
(2024)	(298X)	(886X)	(683X)	(240KX)
Chronoss	1386	46	6	2349
(2024)	(296X)	(58X)	(100X)	(240KX)
Chronos _T	1389	8	2	2504
(2024)	(297X)	(10X)	(33X)	(256KX)
GPT4TS	13.9	87	1.34	0.3
(NeurIPS '23)	(3X)	(109X)	(36X)	(26X)
Lag-Llama	1619	2.4	0.2	37.5
(2024)	(346X)	(3X)	(3X)	(3830X)
Moirai _s	205	14	<u>0.1</u>	1.4
(ICML '24)	(44X)	(18X)	(2X)	(141X)
Moirai _L	693	311	2	10.5
(ICML '24)	(148X)	(389X)	(33X)	(1070X)
Moirai _B	335	91	1	4.1
(ICML '24)	(72X)	(114X)	(17X)	(421X)
Moment-L	88	348	8	1.4
(ICML '24)	(19X)	(435X)	(133X)	(144X)
TimesFM	24	200	2	0.4
(ICML '24)	(5X)	(250X)	(33X)	(46X)

Computational improvement of TTM w.r.t. existing TS pre-trained models. Inference time per-batch in GPU and CPU, total parameters (Params), and maximum GPU memory usage (MEM) are reported.

KDD'24 Tutorial of Foundation Models for Time Series

Ekambaram, V., Jati, A., Dayama, P., Mukherjee, S., Nguyen, N. H., Gifford, W. M., ... & Kalagnanam, J. (2024). Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series. CoRR

Diffusion Models

• Generating time series data using a diffusion model that maps Gaussian vectors to signals resembling those in a given dataset

Yuan, X., & Qiao, Y. Diffusion-TS: Interpretable Diffusion for General Time Series Generation. In ICLR'24

Diffusion Models

(a) Reconstruction

(b) Unconditional gen

Table 1: Results on Multiple Time-Series Datasets (Bold indicates best performance).

Metric	Methods	Sines	Stocks	ETTh	MuJoCo	Energy	fMRI
	Diffusion-TS	0.006±.000	0.147±.025	0.116±.010	0.013±.001	0.089±.024	0.105±.006
Context FID	TimeGAN	0.101±.014	0.103±.013	0.300±.013	0.563±.052	0.767±.103	1.292±.218
Score	TimeVAE	0.307±.060	0.215±.035	0.805±.186	0.251±.015	1.631±.142	14.449±.969
Score	Diffwave	0.014±.002	0.232±.032	0.873±.061	0.393±.041	1.031±.131	0.244±.018
(Lower the Better)	DiffTime	0.006±.001	0.236±.074	0.299±.044	0.188±.028	0.279±.045	0.340±.015
(Lower the Better)	Cot-GAN	1.337±.068	0.408±.086	0.980±.071	1.094±.079	1.039±.028	7.813±.550
	Diffusion-TS	0.015±.004	0.004±.001	0.049±.008	0.193±.027	0.856±.147	1.411±.042
Correlational	TimeGAN	0.045±.010	0.063±.005	0.210±.006	0.886±.039	4.010±.104	23.502±.039
Score	TimeVAE	0.131±.010	0.095±.008	0.111±020	0.388±.041	1.688±.226	17.296±.526
Score	Diffwave	0.022±.005	0.030±.020	0.175±.006	0.579±.018	5.001±.154	3.927±.049
	DiffTime	0.017±.004	0.006±.002	0.067±.005	0.218±.031	1.158±.095	1.501±.048
(Lower the Better)	Cot-GAN	$0.049 \pm .010$	0.087±.004	0.249±.009	1.042±.007	3.164±.061	26.824±.449
	Diffusion-TS	0.006±.007	0.067±.015	0.061±.009	0.008±.002	0.122±.003	0.167±.023
Discriminative	TimeGAN	0.011±.008	0.102±.021	0.114±.055	0.238±.068	0.236±.012	0.484±.042
Score	TimeVAE	0.041±.044	0.145±.120	0.209±.058	0.230±.102	0.499±.000	0.476±.044
Score	Diffwave	$0.017 \pm .008$	0.232±.061	$0.190 \pm .008$	0.203±.096	0.493±.004	0.402±.029
	DiffTime	0.013±.006	0.097±.016	0.100±.007	0.154±.045	0.445±.004	0.245±.051
(Lower the Better)	Cot-GAN	0.254±.137	0.230±.016	0.325±.099	0.426±.022	$0.498 \pm .002$	0.492±.018
	Diffusion-TS	0.093±.000	0.036±.000	0.119±.002	0.007±.000	0.250±.000	0.099±.000
Dradictiva	TimeGAN	0.093±.019	0.038±.001	$0.124 \pm .001$	0.025±.003	0.273±.004	0.126±.002
Fieure	TimeVAE	0.093±.000	0.039±.000	0.126±.004	0.012±.002	0.292±.000	0.113±.003
Score	Diffwave	0.093±.000	0.047±.000	0.130±.001	0.013±.000	0.251±.000	0.101±.000
	DiffTime	0.093±.000	$0.038 \pm .001$	0.121±.004	$0.010 \pm .001$	$0.252 \pm .000$	$0.100 \pm .000$
(Lower the Better)	Cot-GAN	$0.100 \pm .000$	0.047±.001	$0.129 \pm .000$	0.068±.009	$0.259 \pm .000$	0.185±.003
	Original	0.094±.001	0.036±.001	0.121±.005	0.007±.001	0.250±.003	0.090±.001

(d) Visualization

KDD'24 Tutorial of Foundation Models for Time Series

- The model observes sequences from different periods and different datasets
- Increasing the pre-training difficulty and directing more attention to the temporal variation
- S3 does not require time alignment, and single-series sequences are regarded as standard sentences of time series

Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML'24

- Cross-domain learning + Domain Instructions
- Construct batches of data by randomly selecting instances from the data pool
- Data pool consists of training data across 8 different time series dataset

KDD'24 Tutorial of Foundation Models for Time Series

Liu, X., Hu, J., Li, Y., Diao, S., Liang, Y., Hooi, B., & Zimmermann, R. (2024, May). Unitime: A language-empowered unified model for cross-domain time series forecasting. In WWW'24

Meteorological indicator data with ten minutes sample rate.

Exchange rate data with one day sample rate. Patient number data with one week sample rate.

Pre-training Pipelines

Table

Weather

Exchange

Illness

36,792

5,120

617

5,271

665

74

10.540

1,422

170

64

24

16

Table 2: Forecasting performance comparisons. The input sequence length is set to 36 for the Illness dataset and 96 for the
others. The predictive lengths are set to {24, 36, 48, 60} for Illness, and {96, 192, 336, 720} for others. Avg is averaged over all
predictive lengths. Note that we bold the best performance among models trained across datasets, which is on the left-hand
side of the two vertical lines, and we bold and underline the best performance for the entire row.

Table 6: De	ble 6: Details of the training, validation, and testing set partitions, as well as the configurations specific to different domains.												
Dataset	#Training	#Validation	#Testing	Batch Size	Oversample Times	Stride	Domain Instructions						
ETTm1	34,465	11,521	11,521	64	0	16	Electricity transformer A data with fifteen minutes sample rate.						
ETTm2	34,465	11,521	11,521	64	0	16	Electricity transformer B data with fifteen minutes sample rate.						
ETTh1	8,545	2,881	2,881	32	0	16	Electricity transformer A data with one hour sample rate.						
ETTh2	8,545	2,881	2,881	32	0	16	Electricity transformer B data with one hour sample rate.						
Electricity	18,317	2,633	5,261	24	0	16	Power consumption data with hourly sample rate.						

16

16

4

Table 7:	Variants	of domain	instructions.
----------	----------	-----------	---------------

0

0

12

Variants	Prompts for ChatGPT	Example 1	Example 2
Original	-	meteorological indicator data with ten	exchange rate data with one day sample rate.
		minute sample rate.	
Short	Rephrase the following text shorter: {instruc-	ten-minute meteorological data.	daily exchange rate data.
	tion}.		
Expand	Rephrase the following text longer: {instruc-	the dataset for meteorological indicators	the dataset for exchange rates provides com-
	tion}.	presents detailed information, with data	prehensive information, with data points
		points collected at specific ten-minute in-	recorded at consistent one-day intervals, en-
		tervals, facilitating a thorough analysis of	abling a detailed examination of currency
		meteorological conditions and trends over	fluctuations and trends over time.
		time.	
Detail	Rephrase the following text: {instruction}, by	the dataset includes meteorological indica-	the dataset comprises exchange rate data
	adding the information: {information}.	tors sampled every ten minutes, collected	sampled on a daily basis, documenting the
		in the year 2020, and features information	daily exchange rates of eight distinct coun-
		on 21 meteorological indicators, including	tries spanning the period from 1990 to 2016.
		temperature and humidity.	

siu		ne two	J VEIT	Icai I	mes,	anu v	ve boi	u anu	unu	ernne	the b	est pe	11011	nance	: 101 t	ne en	ther	Jw.										
		Мо	dels Tr	rained	Acros	s Data	sets	Models Trained on Each Dataset																				
М	ethod	Uni	Гime	GPT	'4TS†	Patch	1TST [†]	GPT	'4TS*	Patch	nTST*	Time	esNet	DLi	near	NSfo	rmer	FEDfo	ormer	Autof	ormer	Info	rmer					
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE					
_	96	0.322	0.363	0.509	0.463	0.927	0.604	0.335	0.369	0.344	0.373	0.338	0.375	0.345	0.372	0.386	0.398	0.379	0.419	0.505	0.475	0.672	0.571					
Ξ	192	0.366	0.387	0.537	0.476	0.964	0.620	0.374	0.385	0.367	0.386	0.374	0.387	0.380	0.389	0.459	0.444	0.426	0.441	0.553	0.496	0.795	0.669					
Ē	336	0.398	0.407	0.564	0.488	1.041	0.656	0.407	0.406	0.392	0.407	0.410	0.411	0.413	0.413	0.495	0.464	0.445	0.459	0.621	0.537	1.212	0.871					
ET	720	0.454	0.440	0.592	0.504	0.950	0.636	0.469	0.442	0.464	0.442	0.478	0.450	0.474	0.453	0.585	0.516	0.543	0.490	0.671	0.561	1.166	0.823					
	Avg	0.385	0.399	0.551	0.483	0.971	0.629	0.396	0.401	0.392	0.402	0.400	0.406	0.403	0.407	0.481	0.456	0.448	0.452	0.588	0.517	0.961	0.734					
=	06	0 183	0.266	0.220	0.304	0.240	0.318	0 190	0.275	0 177	0.260	0.187	0.267	0.193	0.202	0 102	0.274	0.203	0.287	0.255	0 330	0.365	0.453					
5	192	0.251	0.310	0.287	0.338	0.301	0.352	0.253	0.313	0.246	0.305	0.249	0.309	0.284	0.362	0.280	0.339	0.269	0.328	0.281	0.340	0.533	0.563					
E H	336	0.319	0.351	0.337	0.367	0.367	0.391	0.321	0.360	0 305	0 343	0.321	0.351	0.369	0.427	0.334	0.361	0.325	0.366	0.339	0.372	1 363	0.887					
ET	720	0.420	0.410	0.430	0.416	0.451	0.432	0.411	0.406	0.410	0.405	0.408	0.403	0.554	0.522	0.417	0.413	0.421	0.415	0.433	0.432	3.379	1.338					
	Avg	0.293	0.334	0.321	0.356	0.340	0.373	0.294	0.339	0.285	0.328	0.291	0.333	0.350	0.401	0.306	0.347	0.305	0.349	0.327	0.371	1.410	0.810					
=	06	0 397	0.418	0.449	0.424	0.400	0.403	0.308	0.424	0.404	0.413	0.384	0.402	0.386	0.400	0.513	0.401	0 376	0.410	0.449	0.450	0.865	0.713					
-	192	0.434	0.439	0.503	0.453	0.467	0 4 4 4	0.449	0.427	0.454	0.440	0.436	0.429	0.437	0.432	0.534	0.504	0.420	0.448	0.500	0.482	1.008	0.792					
Ę	336	0.468	0.457	0.540	0.477	0.509	0.472	0.492	0.466	0.497	0.462	0.491	0.469	0.481	0.459	0.588	0.535	0.459	0.465	0.521	0.496	1.107	0.809					
E	720	0.469	0.477	0.515	0.489	0.503	0.485	0.487	0.483	0.496	0.481	0.521	0.500	0.519	0.516	0.643	0.616	0.506	0.507	0.514	0.512	1.181	0.865					
	Avg	0.442	0.448	0.502	0.461	0.472	0.451	0.457	0.450	0.463	0.449	0.458	0.450	0.456	0.452	0.570	0.537	0.440	0.460	0.496	0.487	1.040	0.795					
=	06	0.296	0.345	0 303	0.340	0.314	0.361	0.312	0.360	0.312	0.358	0.340	0.374	0.333	0.387	0.476	0.458	0.358	0.307	0.346	0.388	3 755	1 5 2 5					
2	192	0.374	0.394	0.391	0.399	0.407	0.411	0.387	0.405	0.397	0.408	0.402	0.414	0.477	0.476	0.512	0.493	0.429	0.439	0.456	0.452	5.602	1.931					
법	336	0 4 1 5	0 4 2 7	0.422	0.428	0.437	0 4 4 3	0.424	0.437	0.435	0.440	0.452	0.452	0.594	0.541	0.552	0.551	0.496	0.487	0.482	0.486	4 721	1.835					
ET	720	0.425	0 444	0.429	0.449	0.434	0.448	0.433	0.453	0.436	0.449	0.462	0.468	0.831	0.657	0.562	0.560	0.463	0.474	0.515	0.511	3 647	1.625					
	Avg	0.378	0.403	0.386	0.406	0.398	0.416	0.389	0.414	0.395	0.414	0.414	0.427	0.559	0.515	0.526	0.516	0.437	0.449	0.450	0.459	4.431	1.729					
=	04	0.100	0.007	0.020	0.201	0.109	0.200	0.107	0.200	0.197	0.200	0.1/0	0.079	0.107	0.000	0.160	0.072	0.102	0.200	0.201	0.217	0.974	0.2/0					
ty	90	0.196	0.287	0.232	0.321	0.198	0.290	0.197	0.290	0.180	0.269	0.168	0.272	0.197	0.282	0.109	0.275	0.195	0.308	0.201	0.317	0.274	0.306					
rici	226	0.199	0.291	0.234	0.323	0.202	0.295	0.201	0.292	0.190	0.275	0.104	0.209	0.190	0.203	0.102	0.200	0.201	0.315	0.222	0.334	0.290	0.300					
lect	720	0.214	0.305	0.249	0.356	0.223	0.310	0.217	0.309	0.200	0.290	0.198	0.300	0.209	0.301	0.200	0.304	0.214	0.329	0.251	0.350	0.300	0.394					
Ξ	Avg	0.234	0.335	0.269	0.338	0.239	0.341	0.233	0.308	0.247	0.322	0.192	0.205	0.243	0.300	0.193	0.321	0.240	0.333	0.234	0.338	0.373	0.457					
=	04	0.210	0.303	0.251	0.050	0.221	0.011	0.217	0.344	0.207	0.205	0.172	0.225	0.212	0.300	0.172	0.220	0.217	0.327	0.227	0.330	0.311	0.397					
н	96	0.171	0.214	0.212	0.251	0.213	0.260	0.203	0.244	0.177	0.218	0.172	0.220	0.196	0.255	0.173	0.223	0.217	0.296	0.266	0.336	0.300	0.384					
the	192	0.217	0.254	0.261	0.288	0.269	0.300	0.247	0.277	0.222	0.259	0.219	0.261	0.237	0.296	0.245	0.285	0.276	0.330	0.307	0.307	0.598	0.544					
Vea	720	0.274	0.293	0.313	0.324	0.330	0.341	0.297	0.311	0.277	0.297	0.260	0.300	0.205	0.333	0.521	0.330	0.339	0.300	0.339	0.393	1.050	0.525					
-	720 Ava	0.351	0.345	0.560	0.372	0.404	0.309	0.308	0.330	0.352	0.347	0.303	0.339	0.345	0.301	0.414	0.410	0.405	0.420	0.419	0.420	0.634	0.741					
=	rivg	0.233	0.270	0.275	0.309	0.504	0.525	0.279	0.277	0.237	0.200	0.237	0.207	0.203	0.517	0.200	0.014	0.509	0.500	0.550	0.002	0.0.94	0.540					
e Se	96	0.086	0.209	0.142	0.261	0.137	0.260	0.091	0.212	0.109	0.236	0.107	0.234	0.088	0.218	0.111	0.237	0.148	0.278	0.197	0.323	0.847	0.752					
ang	192	0.174	0.299	0.224	0.339	0.222	0.341	0.185	0.304	0.205	0.327	0.226	0.544	0.1/6	0.315	0.219	0.555	0.271	0.380	0.300	0.569	1.204	0.895					
xch	330	0.519	0.408	0.577	0.448	0.372	0.447	0.528	0.417	0.550	0.450	0.367	0.448	0.515	0.427	0.421	0.476	0.460	0.500	0.309	0.524	1.072	1.056					
ä	/20 Ava	0.8/5	0.701	0.939	0.736	0.912	0.727	0.880	0.704	0.888	0./10	0.964	0.746	0.839	0.695	0.461	0.769	0.510	0.841	1.44/	0.941	2.4/8	0.008					
_	Avg	0.304	0.404	0.421	0.440	0.411	0.444	0.571	0.409	0.390	0.429	0.410	0.445	0.334	0.414	0.401	0.454	0.519	0.300	0.015	0.559	1.550	0.996					
	24	2.460	0.954	3.322	1.278	4.289	1.485	2.732	1.100	2.335	0.989	2.317	0.934	2.398	1.040	2.294	0.945	3.228	1.260	3.483	1.287	5.764	1.677					
ess	36	1.998	0.912	3.696	1.374	4.360	1.510	2.664	1.063	2.561	1.035	1.972	0.920	2.646	1.088	1.825	0.848	2.679	1.080	5.103	1.148	4.755	1.467					
ulli	48	1.979	0.912	3.765	1.402	4.209	1.481	2.617	1.041	2.465	1.022	2.238	0.940	2.614	1.086	2.010	0.900	2.622	1.078	2.669	1.085	4.763	1.469					
	00	2.109	0.938	3.928	1.452	3.981	1.444	2.4/8	1.055	2.189	1.011	2.027	0.928	2.804	1.146	2.1/8	0.903	2.85/	1.157	2.770	1.125	5.127	1.504					
1 st	Court	2.157	0.929	3.078	1.3/2	4.210	1.460	2.023	1.000	2.308	2	2.139	0.951	2.010	1.090	2.077	<u>0.914</u> 7	2.04/	1.144	3.006	1.101	3.157	1.344					
1	Count	1 3	17	1 '	0		v	II	5	1 1		1 1	U	1 9	U		/	9	t i		,	I '	0					

Stage 1 - Spatio-Temporal Pre-Training

Stage 2 - Spatio-Temporal Knowledge-Guided Prompt Learning

Masking reconstruction

Prompt learning enhances generalization ability

(a) Short-term prediction

	Tax	iBJ	Cro	wd	Cell	ular	Bike	NYC	Traff	ìcJN	TD	ive	Traff	icSH
Model	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	RMSE MAE		MAE	RMSE	MAE	RMSE	MAE
HA	53.77	29.82	17.80	6.79	72.94	27.57	11.41	3.43	1.38	0.690	150.2	74.5	1.24	0.771
ARIMA	56.70	39.53	21.87	10.23	81.31	40.22	12.37	3.86	1.20	0.651	211.3	108.5	1.17	0.769
STResNet	45.17	30.87	5.355	3.382	24.30	14.32	8.20	4.98	0.964	0.556	220.1	117.4	1.00	0.723
ACFM	37.77	21.59	4.17	2.34	22.79	12.00	3.93	1.67	0.920	0.559	98.1	51.9	0.833	0.566
STID	27.36	14.01	3.85	1.63	18.77	8.24	4.06	1.54	0.880	0.495	47.4	23.3	0.742	0.469
STNorm	29.37	15.71	4.44	2.09	19.77	8.19	4.45	1.66	0.961	0.532	54.3	47.9	0.871	0.579
STGSP	45.04	28.28	7.93	4.56	39.99	21.40	5.00	1.69	0.882	0.490	94.6	47.8	1.02	0.749
MC-STL	29.14	15.83	4.75	2.39	21.22	10.26	4.08	2.05	1.19	0.833	54.2	28.1	1.00	0.720
PromptST	27.44	14.54	<u>3.52</u>	<u>1.54</u>	<u>15.74</u>	7.20	4.36	1.57	0.953	0.490	47.5	22.8	0.811	0.523
MAU	38.14	20.13	4.94	2.35	39.09	18.73	5.22	2.06	1.28	0.697	48.8	22.1	1.37	0.991
PredRNN	27.50	14.29	5.13	2.36	24.15	10.44	5.00	1.74	0.852	0.463	54.9	25.2	0.748	0.469
MIM	28.62	14.77	5.66	2.27	21.38	9.37	4.40	1.62	1.17	0.650	51.4	22.7	0.760	0.505
SimVP	32.66	17.67	3.91	1.96	16.48	8.23	4.11	1.67	0.969	0.556	46.8	22.9	0.814	0.569
TAU	33.90	19.37	4.09	2.11	17.94	8.91	4.30	1.83	0.993	0.566	51.6	28.1	0.820	0.557
PatchTST	42.74	22.23	10.25	3.62	43.40	15.74	5.27	1.65	1.25	0.616	106.4	51.3	1.10	0.663
iTransformer	36.97	19.14	9.40	3.40	37.01	13.93	7.74	2.53	1.11	0.570	86.3	42.6	1.04	0.655
PatchTST(one-for-all)	43.66	23.16	13.51	5.00	56.80	20.56	9.97	3.05	1.30	0.645	127.0	59.26	1.13	0.679
UniST(one-for-all)	26.84	13.95	3.00	1.38	14.29	6.50	3.50	1.27	0.843	0.430	44.97	19.67	0.665	0.405

(b) Long-term prediction

	TaxiNYC		Cro	wd	Bike	NYC
Model	RMSE	MAE	RMSE	MAE	RMSE	MAE
HA	61.03	21.33	19.57	8.49	11.00	3.66
ARIMA	68.0	28.66	21.34	8.93	11.59	3.98
STResNet	29.54	14.46	8.75	5.58	7.15	3.87
ACFM	32.91	13.72	6.16	3.35	4.56	1.86
STID	24.74	11.01	4.91	2.63	4.78	2.24
STNorm	31.81	11.99	9.62	4.30	6.45	2.18
STGSP	28.65	10.38	17.03	8.21	4.71	1.54
MC-STL	29.29	17.36	9.01	6.32	4.97	2.61
MAU	26.28	9.07	20.13	8.49	6.18	2.13
PredRNN	21.17	7.31	19.70	10.66	5.86	1.97
MIM	63.36	29.83	15.70	8.81	7.58	2.81
SimVP	20.18	9.78	5.50	3.13	4.10	1.71
TAU	24.97	10.93	5.31	2.81	<u>3.89</u>	1.73
PatchTST	30.64	17.49	5.25	2.83	5.27	1.65
iTransformer	33.81	11.48	6.94	2.63	6.00	2.02
PatchTST(one-for-all)	34.50	10.63	6.39	2.92	6.02	1.83
UniST (one-for-all)	19.83	6.71	4.25	2.26	3.56	1.31

(c) Zero/few-shot performance

Yuan, Y., Ding, J., Feng, J., Jin, D., & Li, Y. (2024). UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction. In KDD'24.

0

0

PromptCast

(LLaMA)

NLL/D

(a) Forecasting performance

GasRateCO2

SM-GP

0.2

0

0.0

TCN

CRPS

LLMTime

(LLaMA)

KDD'24 Tutorial of Foundation Models for Time Series

0.1

0.2 0.5

Train Fraction

ARIMA

8

6

NLL/D

LLMTime

N-HiTS

(GPT-3)

Gruver, N., Finzi, M., Qiu, S., & Wilson, A. G. (2024). Large language models are zero-shot time series forecasters. In NeurIPS'23

NLL/D

PromptCast

(GPT-3)

2

0

N-BEATS

KDD'24 Tutorial of Foundation Models for Time Series

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J., Shi, X., ... & Wen, Q. (2024, May). Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. In ICLR'24

Table 3: Few-shot learning on 10% training data. We use the same protocol in Tab. 1. All results are averaged from four different forecasting horizons: $H \in \{96, 192, 336, 720\}$. Our full results are in Appendix E.

Methods	TIME	-LLM	GPT	'4TS	DLi	near	Patel	nTST	Time	esNet	FEDf	ormer	Autof	former	Statio	onary	ETSf	ormer	Ligh	ntTS	Info	rmer	Refo	ormer
wiedious	(0	urs)	(202	23a)	(20	23)	(20	23)	(20	23)	(20)22)	(20	021)	(20	22)	(20	22)	(202	22a)	(20	21)	(20)20)
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.556	0.522	<u>0.590</u>	<u>0.525</u>	0.691	0.600	0.633	0.542	0.869	0.628	0.639	0.561	0.702	0.596	0.915	0.639	1.180	0.834	1.375	0.877	1.199	0.809	1.249	0.833
ETTh2	0.370	0.394	<u>0.397</u>	<u>0.421</u>	0.605	0.538	0.415	0.431	0.479	0.465	0.466	0.475	0.488	0.499	0.462	0.455	0.894	0.713	2.655	1.160	3.872	1.513	3.485	1.486
ETTm1	0.404	0.427	0.464	0.441	<u>0.411</u>	<u>0.429</u>	0.501	0.466	0.677	0.537	0.722	0.605	0.802	0.628	0.797	0.578	0.980	0.714	0.971	0.705	1.192	0.821	1.426	0.856
ETTm2	0.277	0.323	<u>0.293</u>	<u>0.335</u>	0.316	0.368	0.296	0.343	0.320	0.353	0.463	0.488	1.342	0.930	0.332	0.366	0.447	0.487	0.987	0.756	3.370	1.440	3.978	1.587
Weather	0.234	0.273	<u>0.238</u>	<u>0.275</u>	0.241	0.283	0.242	0.279	0.279	0.301	0.284	0.324	0.300	0.342	0.318	0.323	0.318	0.360	0.289	0.322	0.597	0.495	0.546	0.469
ECL	0.175	<u>0.270</u>	<u>0.176</u>	0.269	0.180	0.280	0.180	0.273	0.323	0.392	0.346	0.427	0.431	0.478	0.444	0.480	0.660	0.617	0.441	0.489	1.195	0.891	0.965	0.768
Traffic	0.429	<u>0.306</u>	0.440	0.310	0.447	0.313	<u>0.430</u>	0.305	0.951	0.535	0.663	0.425	0.749	0.446	1.453	0.815	1.914	0.936	1.248	0.684	1.534	0.811	1.551	0.821
$1^{\rm st} {\rm Count}$	1	7	1	<u> </u>	(D		<u>1</u>	(D		0	(0	(С	()	()	()	(0

Table 5: Zero-shot learning results. **Red**: the best, <u>Blue</u>: the second best. Appendix E shows our detailed results.

Methods	Time- (Ou	LLM (rs)	GPT (202	'4TS 23a)	LLM (20	Time 23)	DLi (20	near 23)	Patch (20	nTST 23)	Time (20	esNet 23)
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
$ETTh1 \rightarrow ETTh2$	0.353	0.387	0.406	0.422	0.992	0.708	0.493	0.488	<u>0.380</u>	<u>0.405</u>	0.421	0.431
$ETTh1 \rightarrow ETTm2$	0.273	0.340	0.325	0.363	1.867	0.869	0.415	0.452	<u>0.314</u>	<u>0.360</u>	0.327	0.361
$ETTh2 \rightarrow ETTh1$	0.479	0.474	0.757	0.578	1.961	0.981	0.703	0.574	<u>0.565</u>	<u>0.513</u>	0.865	0.621
$ETTh2 \rightarrow ETTm2$	0.272	0.341	0.335	0.370	1.867	0.869	0.328	0.386	<u>0.325</u>	<u>0.365</u>	0.342	0.376
$ETTm1 \rightarrow ETTh2$	0.381	0.412	<u>0.433</u>	0.439	0.992	0.708	0.464	0.475	0.439	<u>0.438</u>	0.457	0.454
$ETTm1 \rightarrow ETTm2$	0.268	0.320	0.313	0.348	1.867	0.869	0.335	0.389	<u>0.296</u>	<u>0.334</u>	0.322	0.354
$ETTm2 \rightarrow ETTh2$	0.354	0.400	0.435	0.443	0.992	0.708	0.455	0.471	<u>0.409</u>	<u>0.425</u>	0.435	0.443
$ETTm2 \rightarrow ETTm1$	0.414	0.438	0.769	0.567	1.933	0.984	0.649	0.537	<u>0.568</u>	<u>0.492</u>	0.769	0.567

(ii) Short-term forecasting

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J., Shi, X., ... & Wen, Q. (2024, May). Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. In ICLR'24

- Enabling LLMs to comprehend spatial-temporal dependencies in data for downstream urban tasks
- Spatio-temporal encoder + instruction-tuning = UrbanGPT

(a) Forecasting performance

Table 1: Our model's performance in zero-shot prediction is evaluated on three diverse datasets: NYC-taxi, NYC-bike, and
NYC-crime, providing a comprehensive assessment of its predictive capabilities in unseen situations.

	Dataset NYC-taxi					NYC	-bike			NYC-crime			
Model	Туре	Inf	low	Out	flow	Inf	low	Out	flow	Burgla	ary	Robbe	ery
	Metrics	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	Macro-F1	Recall	Macro-F1	Recall
AG	CRN	10.86	26.51	13.15	36.45	3.41	7.98	3.42	8.08	0.48	0.00	0.49	0.01
AST	IGCN	9.75	24.12	12.42	33.28	5.58	11.58	5.78	12.29	0.49	0.01	0.55	0.09
G	WN	10.73	26.50	9.67	26.74	3.32	8.17	3.07	7.52	0.48	0.00	0.52	0.04
MT	GNN	10.16	25.84	12.59	35.38	3.18	7.62	3.20	7.65	0.64	0.27	0.65	0.30
ST	WA	11.28	28.97	13.54	38.61	4.59	10.94	4.35	10.67	0.48	0.00	0.51	0.03
STS	GCN	18.97	41.38	20.07	45.79	6.85	14.98	6.54	14.77	0.48	0.00	0.48	0.00
ST	GCN	12.54	30.80	14.32	39.58	4.11	9.21	4.45	9.62	0.48	0.00	0.64	0.30
TC	GCN	10.04	25.10	10.98	30.03	2.88	6.55	2.91	6.42	0.56	0.10	0.58	0.13
DMV	STNET	11.00	28.29	10.59	29.20	3.80	9.87	3.65	9.21	0.48	0.01	0.59	0.15
ST-I	LSTM	16.97	34.43	18.93	44.10	7.78	15.41	6.92	17.12	0.48	0.00	0.49	0.03
Urba	anGPT	6.16	16.92	6.83	21.78	2.02	5.16	2.01	5.03	0.67	0.34	0.69	0.42

(b) Showcase

Table 3: We examine the zero-shot predictions of different LLMs for bicycle flow in NYC with the provided instructions.

Instructions: Given the historical data for bike flow over 12 time steps in a specific region of New York City, the recorded bike inflows are [12 8 9 15 10 12 14 9 6 12 25 20], and the recorded bike outflows are [5 12 12 15 10 11 6 9 4 6 10 15]. The recording time of the historical data is 'January 14, 2020, 12:00, Tuesday to January 14, 2020, 17:30, Tuesday, with data points recorded at 30-minute intervals'. Here is the region information: This region is located within the Staten Island borough district and encompasses various POIs within a one-kilometer radius, covering Education Facility, Cultural Facility, Commercial, Transportation Facility categories. We now aim to predict the bike inflow and outflow for the next 12 time steps during the time period of 'January 14, 2020, 18:00, Tuesday to January 14, 2020, 23:30, Tuesday, with data points recorded at 30-minute intervals'. To improve prediction accuracy, a spatio-temporal model is utilized to encode the historical bike data as tokens <ST_Start><ST_HIS><ST_End>, where the first and the second tokens correspond to the representations of bike inflow and outflow. Please conduct an analysis of the traffic patterns in this region, taking into account the provided time and regional information, and then generate the predictions (the predictive tokens for regression).

Ground true: Based on the given information, the predictions of bike inflow and outflow in this region are [26 38 28 24 20 13 16 9 5 3 5 2] and [12 19 10 10 11 9 6 5 4 4 2 2].

UrbanGPT Responds: Based on the given information, the predictions (predicted tokens) of bike inflow and outflow in this region are <ST_PRE> [20 21 22 21 17 12 9 7 6 5 5 5] and <ST_PRE> [11 10 8 7 6 6 5 4 4 3 3 2].

• Moirai (ICML'24)

KDD'24 Tutorial of Foundation Models for Time Series

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. Unified Training of Universal Time Series Forecasting Transformers. In ICML'24

• Chronos (arXiv'24)

Data Subset	# Datasets	# Series	Usage	Baselines
Pretraining-only	13	795,936	pretraining	-
Benchmark I	15	97,272	pretraining and in- domain evaluation	Naive, SeasonalNaive, AutoETS, AutoTheta, AutoARIMA, DeepAR, TFT, PatchTST, DLinear, WaveNet, N-BEATS, N-HiTS, GPT4TS, Lag-Llama, Moirai-1.0-R
Benchmark II	27	190,674	zero-shot evaluation	All the above, LLMTime and ForecastPFN

Dataset	Domain	Frea.	Num. Series	Se	ries Leng	gth	Prediction
Duluber	Domain	rioq.	Frank Series	min	avg	max	Length (H)
Pretraining-only							
Brazilian Cities Temperature	nature	М	12	492	757	1320	-
Mexico City Bikes	transport	$1\mathrm{H}$	494	780	78313	104449	-
Solar (5 Min.)	energy	5 min	5166	105120	105120	105120	-
Solar (Hourly)	energy	$1\mathrm{H}$	5166	8760	8760	8760	-
Spanish Energy and Weather	energy	$1\mathrm{H}$	66	35064	35064	35064	-
Taxi (Hourly)	transport	$1\mathrm{H}$	2428	734	739	744	-
USHCN	nature	1D	6090	5906	38653	59283	-
Weatherbench (Daily)	nature	1D	225280	14609	14609	14610	-
Weatherbench (Hourly)	nature	$1\mathrm{H}$	225280	350633	350639	350640	-
Weatherbench (Weekly)	nature	1W	225280	2087	2087	2087	-
Wiki Daily (100k)	web	1D	100000	2741	2741	2741	-
Wind Farms (Daily)	energy	1D	337	71	354	366	-
Wind Farms (Hourly)	energy	$1\mathrm{H}$	337	1715	8514	8784	-

Dataset	Domain	Freq.	Num. Series	Se	ries Len	gth	Prediction
				\min	avg	max	Length (H)
In-domain evaluation							
Electricity (15 Min.)	energy	15 min	370	16032	113341	140256	24
Electricity (Hourly)	energy	$1\mathrm{H}$	321	26304	26304	26304	24
Electricity (Weekly)	energy	1W	321	156	156	156	8
KDD Cup 2018	nature	$1\mathrm{H}$	270	9504	10897	10920	48
London Smart Meters	energy	$30 \min$	5560	288	29951	39648	48
M4 (Daily)	various	1D	4227	107	2371	9933	14
M4 (Hourly)	various	$1\mathrm{H}$	414	748	901	1008	48
M4 (Monthly)	various	1M	48000	60	234	2812	18
M4 (Weekly)	various	1W	359	93	1035	2610	13
Pedestrian Counts	${\rm transport}$	$1\mathrm{H}$	66	576	47459	96424	48
Rideshare	transport	1H	2340	541	541	541	24
Taxi (30 Min.)	${\rm transport}$	$30 \min$	2428	1469	1478	1488	48
Temperature-Rain	nature	1D	32072	725	725	725	30
Uber TLC (Daily)	transport	1D	262	181	181	181	7
Uber TLC (Hourly)	transport	$1\mathrm{H}$	262	4344	4344	4344	24
Zero-shot evaluation							
Australian Electricity	energy	30min	5	230736	231052	232272	48
CIF 2016	banking	1M	72	28	98	120	12
Car Parts	retail	$1\mathrm{M}$	2674	51	51	51	12
Covid Deaths	healthcare	1D	266	212	212	212	30
Dominick	retail	1D	100014	201	296	399	8
ERCOT Load	energy	$1\mathrm{H}$	8	154854	154854	154854	24
ETT (15 Min.)	energy	15 min	14	69680	69680	69680	24
ETT (Hourly)	energy	$1\mathrm{H}$	14	17420	17420	17420	24
Exchange Rate	finance	1B	8	7588	7588	7588	30
FRED-MD	economics	1M	107	728	728	728	12
Hospital	healthcare	1M	767	84	84	84	12
M1 (Monthly)	various	1M	617	48	90	150	18
M1 (Quarterly)	various	3M	203	18	48	114	8
M1 (Yearly)	various	1Y	181	15	24	58	6
M3 (Monthly)	various	$1\mathrm{M}$	1428	66	117	144	18
M3 (Quarterly)	various	3M	756	24	48	72	8
M3 (Yearly)	various	1Y	645	20	28	47	6
M4 (Quarterly)	various	3M	24000	24	100	874	8
M4 (Yearly)	various	1Y	23000	19	37	841	6
M5	retail	1D	30490	124	1562	1969	28
NN5 (Daily)	finance	1D	111	791	791	791	56
NN5 (Weekly)	finance	1W	111	113	113	113	8
Tourism (Monthly)	various	1M	366	91	298	333	24
Tourism (Quarterly)	various	1Q	427	30	99	130	8
Tourism (Yearly)	various	1Y	518	11	24	47	4
Traffic	transport	1H 1D	862	17544	17544	17544	24
Weather	nature	1D	3010	1332	14296	65981	30

KDD'24 Tutorial of Foundation Models for Time Series

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.

• Timer (ICML'24)

asks: Time Series Forecasting ags: time series forecasting time Dataset card E Viewer	Modalities: Text series analysis time se HE Files and versions	 Time-series Libraries: Commun 	Format: Datase ity 1	s: » arrow ets P Croiss	Size: 1001 ant Licen	K-1M ArXiv: se: 🏛 apache	antiv:2402.023	68 🗋 🗈 ar.
田 Dataset Viewer (First 5GB) ◎			G Au	i <u>to-converted</u> to I	Parquet 🛷	API 🖀 Embed	View in Dataset	Viewer
Subset (5) default · 434k rows		~	Split (1) train	434k rows				~
Q Search this dataset								
item_id string · lengths	start string · classes	end string · classe 443 values	s fr st	eq ring · <i>classes</i> values	target sequer 288	: ice · lengths 7.4M		\$
Health_SelfRegulationSCP1_458_0					[-8.1 -14.2	1999988555908 79999732971192	32, -11.560000419 L, -18.1900005340	96167, 957617_
Health_SelfRegulationSCP1_458_1					[-20 -18.05	0900001525878 59999465942383	39, -19.5, 3, -17.25,	
Health_SelfRegulationSCP1_458_2					[-18 -19.3	7199993133544 799991607666,	192, -19.87999916 -19.719999313354	507666, 1492,
Health_SelfRegulationSCP1_458_3					[-16 -15.93	.4099998474121 70000267028809	l1, -17.379999160 9, -16.9699993133	07666, 354492_
Health_SelfRegulationSCP1_458_4					[-23 -26.90	2199993133544 9999984741211	192, -28.21999931335	54492,_
Health_SelfRegulationSCP1_458_5					[-30 -28.53	.2800006866455 30000686645508	508, 3, -26.6599998474	1211,_
	< Previous	1 2 3		4.337 Nex	t >			

■ Datasets: In thum / UTSD To Slike 11

- Unified Time Series Dataset (UTSD) encompasses seven domains with up to 1B time points (UTSD-12G)
- Data complexity is measured by Augmented Dickey-Fuller (ADF) test (that reflects the degree of non-stationarity)

Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. Timer: Generative Pre-trained Transformers Are Large Time Series Models. In ICML'24

• UniST (KDD'24)

Dataset	Min value	Max value	Mean value	Standard deviation	Dataset	Domain	City	Temporal Duration	Temporal interval	Spatial partition
TaxiBJ Cellular TaxiNYC-1	0.0	1285 2992532 1517	107 75258 32	133 149505 94	TaxiBJ	Taxi GPS	Beijing, China	20130601-20131030 20140301-20140630 20150301-20150630 20151101-20160410	Half an hour	32 × 32
TaxiNYC-2	0.0	1283	37	102	Cellular	Cellular usage	Nanjing, China	20201111-20210531	Half an hour	16 * 20
BikeNVC-1	0.0	266	9.2	18.1	TaxiNYC-1	Taxi OD	New York City, USA	20160101-20160229	Half an hour	16 * 12
DikeNVC a	0.0				TaxiNYC-2	Taxi OD	New York City, USA	20150101-20150301	Half an hour	20 * 10
BIKEN IC-2	0.0	299	4.9	14.0	BikeNYC-1	Bike usage	New York City, USA	20160801-20160929	One hour	16 * 8
TDrive	0.0	2681	123	229	BikeNYC-2	Bike usage	New York City, USA	20160701-20160829	Half an hour	10 * 20
Crowd	0.0	593118	21656	40825	TDrive	Taxi trajectory	New York City, USA	20150201-20160602	One hour	32 × 32
TrafficCS	0.0	22.25	6.22	4.79	Crowd	Crowd flow	Nanjing, China	20201111-20210531	Half an hour	16 * 20
TrafficWH	0.0	22.35	6.22	4.68	TrafficCS	Traffic speed	Changsha, China	20220305-20220405	Five minutes	28 × 28
TrafficCD	0.0	22.25	7.33	4.36	TrafficWH	Traffic speed	Wuhan, China	20220305-20220405	Five minutes	30 × 28
TrafficJN	0.0	25.04	5.72	4.71	TrafficCD	Traffic speed	Chengdu, China	20220305-20220405	Five minutes	28×26
TrafficNI	0.0	24.82	5.38	4.73	TrafficJN	Traffic speed	Jinan, China	20220305-20220405	Five minutes	32 imes 18
TrafficSH	0.0	21.83	7.92	3.86	TrafficNJ	Traffic speed	Nanjing, China	20220305-20220405	Five minutes	32×24
Trancon Trancon	0.0	21.05	1.96	5.00	TrafficSH	Traffic speed	Shanghai, China	20220127-20220227	Five minutes	28×32
Traffic5Z	0.0	22.12	5.11	4.75	TrafficSZ	Traffic speed	Shenzhen, China	20220305-20220405	Five minutes	24×18
TrafficGZ	0.0	25.16	5.26	4.79	TrafficGZ	Traffic speed	Guangzhou, China	20220305-20220405	Five minutes	32 × 26
TrafficGY	0.0	28.89	5.95	7.03	TrafficGY	Traffic speed	Guiyang, China	20220305-20220405	Five minutes	26 × 28
TrafficTJ	0.0	25.24	6.32	5.05	TrafficTJ	Traffic speed	Tianjin, China	20220305-20220405	Five minutes	24 × 30
TrafficHZ	0.0	29.50	3.81	4.38	TrafficHZ	Traffic speed	Hangzhou, China	20220305-20220405	Five minutes	28×24
TrafficZZ	0.0	23.26	6.67	4.32	TrafficZZ	Traffic speed	Zhengzhou, China	20220305-20220405	Five minutes	26×26
TrafficBJ	0.0	22.82	6.30	4.22	TrafficBJ	Traffic speed	Beijing, China	20220305-20220405	Five minutes	30 × 32

KDD'24 Tutorial of Foundation Models for Time Series

Multimodality

- 1 Gather numerical data from reputable sources
- 2 Textual data is collected for fine-grained matching with the numerical data
- 3 Binary timestamps (start, end) are leveraged to mark the start and end dates as a universal temporal alignment method between numerical and textual data

Liu, H., Xu, S., Zhao, Z., Kong, L., Kamarthi, H., Sasanur, A. B., ... & Prakash, B. A. (2024). Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis. arXiv preprint arXiv:2406.08627.

Multimodality

Numerical Data	
Numerical data of each domain contains a csv file with has the following format:	
start_date, end_date, OT, (other variable 1), (other variable 2),	Q
Here, OT represents the default target variable for prediction in each dataset. Its specific mean	ing is as follows:

Table 1: Overview of numerical data in Time-MMD, covering key variables across nine domains with daily, weekly, or monthly frequencies, sourced from reputable government departments. Eight domains are updated to May 2024; the environment domain update is scheduled for June 2024.

Domain	Target	Frequency	Timestamps	Timespan
Agriculture	Retail Broiler Composite	Monthly	496	1983 - Present
Climate	Drought Level	Monthly	496	1983 - Present
Economy	International Trade Balance	Monthly	423	1989 - Present
Energy	Gasoline Prices	Weekly	1479	1996 - Present
Environment	Air Quality Index	Daily	11102	1982 - 2023
Health	Influenza Patients Proportion	Weekly	1389	1997 - Present
Security	Disaster and Emergency Grants	Monthly	297	1999 - Present
Social Good	Unemployment Rate	Monthly	900	1950 - Present
Traffic	Travel Volulmn	Monthly	531	1980 - Present

Textual Data

Textual data of each domain contains two csv file, one for report data and another for search data. All data are in a unified format:

start_date, end_date, fact, pred

Visualization of relevant report (a. left) and search (b. right) counts in Time-MMD over time is as follows:

Figure 3: Visualization of relevant report (a, left) and search (b, right) counts in Time-MMD over time. Textual counts from both reports and searches increase over time. Domains with higher attention, such as the economy, have more relevant text data.

Q

Multimodality

Prompt (abbreviated for clarity):

Describe an event that would create a time series, give characteristics of that series and then write code that would generate it.

Generated Scenario:

A. Caption	D. Generating Function
The time series represents the daily count of steps from users of a smartphone fitness app over the span of a year. The sample rate is once daily at midnight. Users' motivation to exercise varies by season and can be influenced by external events like New Year resolutions, causing a spike in activity in early January.	<pre>def generate_series(): # Generally, a person averages around 5000 steps per day. steps = np.random.normal(loc=5000, scale=500, size=365) # New Year effect: increase step count in first month steps[:31] += 1500 # Gradual decrease in enthusiasm for i in range(1, 12): steps[i*30:(i+1)*30] -= i*50</pre>
B. Metadata	# Make sure we don't have negative number of steps
Units: StepsStart: 2021-01-01Short Caption:Frequency: DailyEnd: 2021-12-31"Fitness app daily steps"	<pre>steps = np.where(steps<0, 0, steps) return steps</pre>
C. Characteristics	E. Complete Series Fitness App Daily Steps
1. A mean of 5000 steps3. Mean reversion begins in February2. A high in January4. Non-zero values	2022-01-01 2022-12-31

- We can ask the model to "imagine a scenario" that would produce a time series
- We then yield the following data for each scenario: caption, metadata, characteristics and a script for time series generation

- Describe a scenario that might produce a time series. This scenario should include an external event and how it might influence the reading. Be sure to describe the sample rate of the time series and the duration over which it is sampled. The description should be less than 100 words in length. Delimit this description with the XML tag <description>.
 - The time series must be less than 1000 observations in length, be a single variable, have no values greater than 1e6, and have no missing values.
 - Also add a summary of the description, no more than 25 words in length with the tag <description_short>. Also add summary, no more than three words in length with the tag <description_tiny>. The scenario should be as different as possible from any of the following: [<previous_descriptions>]
- 2. You will generate a list of up to five characteristics of this specific time series, including patterns that you might expect to see in the series and how external events might cause distribution shifts in the data generating process Delimit these characteristics with the XML tag <characteristics>.
- 3. You will write a numpy function called 'generate_series' that takes no arguments and outputs a time series that matches the description. All parameters from the data generating process should be drawn from reasonable distributions. The function must return a single numpy array. Place this code inside a python markdown block and delimit your code with the XML tag < generators. Do not call the function, simply define it. You should also make sure that the scale of time series is realistic. For example, a time series of a quantity like stock price should never be less than zero.</p>
- 4. Return a json string, delimited by the tag <metadata> that contains the units of the time series and the timestamps corresponding to the first and last values. Remember that in JSON format datetimes must be passed as strings. Also include a string that relects the frequency of the time series.

Nere is an example of a complete response: <description_short> *your description* </description_short> <description_short> *your description* </description_timy> <characteristics> *your characteristics* </characteristics> <generator> ``python def generate_series(): # your code here return x

```
</generator>
<metadata>
{
"start": x,
"end": y,
"units": z,
"frequency" : freq
}
```

</metadata>

Application

Global Weather Forecasting

- Left: ClimaX is built as a foundation model for diverse weather and climate modeling tasks
- *Right*: Pretraining phase of ClimaX. Variables are encoded using variable-separate tokenization, and subsequently aggregated using variable aggregation. Together with position embedding and lead time embedding those are fed to the ViT backbone.

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., & Grover, A. (2023). ClimaX: A foundation model for weather and climate. In ICML'23

Application

Financial Agent

KDD'24 Tutorial of Foundation Models for Time Series

Where Are We

Tokenization

Quantization

2282

Context Tokens

... 2245

Historical Time Series

Ψ

... 2310

Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In ICLR'23

Patchify

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.

Normalization

Normalization is overlooked

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.

Ekambaram, V., Jati, A., Dayama, P., Mukherjee, S., Nguyen, N. H., Gifford, W. M., ... & Kalagnanam, J. (2024). Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivaria for Enhanced Zero/Few-Shot For

Data Modality

• Time series reasoning is promising

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J., Shi, X., ... & Wen, Q. (2024, May). Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. In ICLR'24 Merrill, M. A., Tan, M., Gupta, V., Hartvigsen, T., & Althoff, T. (2024). Language Models Still Struggle to Zero-shot Reason about Time Series. arXiv preprint arXiv:2404.11757.

Scaling Laws & Capabilities

Clear and robust scaling laws in language modeling

Big model that is undertrained or small model that is well trained?

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

• Are Transformers better than LSTMs?

• Do we have enough data to feed our model?

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

https://stanford-cs324.github.io/winter2022/assets/pdfs/Scaling%20laws%20pdf.pdf

Scaling Laws & Capabilities

Large models but why?

KDD'24 Tutorial of Foundation Models for Time Series

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682.

Scaling Laws & Capabilities

- All we know so far...
- Model parameters (e.g., 10K to 100M)
- Training tokens (e.g., 10M to 8B)
- Computation (e.g., PF-day budget)

"Large time series models scales approximately as a power law with all three quantities" -- Edwards et al.

KDD'24 Tutorial of Foundation Models for Time Series

Edwards, T. D., Alvey, J., Alsing, J., Nguyen, N. H., & Wandelt, B. D. (2024). Scaling-laws for Large Time-series Models. arXiv preprint arXiv:2405.13867.

FM4TS: KDD'24 TUTORIAL

FOUNDATION MODELS FOR TIME SERIES:

THEORY, ALGORITHMS, AND APPLICATIONS

Thank You

ORGANIZERS

Yuxuan Liang Hong Kong University of Science and Technology (GZ)

Dongjin Song University of Connecticut

Shirui Pan

Griffith University

Qingsong Wen Squirrel AI, USA

CONTRIBUTORS

Haomin Wen Carnegie Mellon University

Ming Jin Yuqi Nie Princeton University Griffith University

Yushan Jiang University of Connecticut