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Abstract
Many real-world applications contain data in the form of multivari-
ate time series (TS) with the hierarchical structure, where classic
methods forecasting each TS independently are inadequate for co-
herency (i.e., satisfying the hierarchical aggregation constraints).
Furthermore, the discrepancies between statistical properties of
different levels can be huge, exacerbated by non-Gaussian distribu-
tions and non-linear correlations. In this paper, we propose a novel
end-to-end hierarchical TS forecasting model, i.e., a Flow-based
Reconcile Transformer (FRT). FRT employs a conditional normaliz-
ing flow-based autoregressive transformer, to represent complex
data distribution, while simultaneously reconciling the forecasts to
ensure coherency. Go beyond other state-of-the-art methods, FRT
accomplishes forecasting and reconciliation simultaneously, while
avoiding any post-processing steps. Moreover, FRT is a deep model
that does not rely on any strong assumptions such as unbiased
estimates or Gaussian distribution. Our experiments are conducted
on four real-world hierarchical datasets from different industrial do-
mains (three public ones and a dataset from the application servers
of our company’s data center) and the results demonstrate the effi-
cacy of our proposed method. Our method has been implemented
extensively within the production environments of a prominent
global payment company. It has emerged as a cornerstone for work-
load forecasting within their data center and plays a critical role
in the optimization of cloud computing resource allocation across
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the entire cluster. This successful deployment of the application
demonstrates that our approach achieves precise hierarchical work-
load prediction, which is of great significance for efficient resource
scheduling, enhancing resource utilization, and reducing server
resource use and energy consumption in data centers.
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• Information systems → Temporal data; • Mathematics of
computing → Time series analysis; • Computing methodolo-
gies → Neural networks.
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1 Introduction
Multivariate time series (TS) forecasting with the hierarchical struc-
ture, such as department sales of multiple stores at different lo-
cations and traffic flow in hierarchical regions, is widespread in
real-world applications [1, 8, 18, 31, 36, 48, 55], which involves
simultaneously forecasting multiple hierarchically related TS via
aggregation operations. These TS not only interact with each other
in the hierarchy but also imply coherency, i.e., TS at upper levels are
the aggregation/summation of those at lower levels. For instance,
in the hierarchical structure of Australian domestic tourism de-
mand [4], the data contains 4 levels from top to bottom, including
1 country, 7 states, 27 zones, and 82 regions, among which dif-
ferent levels of forecasts have distinct business goals. Specifically,
bottom-level forecasts are often about specific demands to help with
regional government decisions, while upper-level forecasts look at
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the macro perspective to assist national strategies. Besides the gen-
eral statistical disparities between levels in real-world hierarchies,
the entanglement of their interactions and correlations presents
a great challenge to the prediction model. Coherency constraints
[49, 60] also add more complication to the prediction model.

The straightforward methods to utilize hierarchical structure
include bottom-up forecasting and top-down forecasting, which, as
their names suggest, make individual predictions at the bottom
or upper levels and then aggregate according to the hierarchical
structure. Although these methods naturally satisfy coherency, they
are unable to adapt to varying statistical properties of all levels.
Specifically, when forecasting from a single level of the aggrega-
tion structure, these methods either aggregated or disaggregated
to obtain forecasts of all the rest levels, ignoring the fact that the
statistical characteristics at different levels can be drastically dis-
tinct, e.g., the TS of upper levels tend to be more stationary, while
those at the bottom levels are often more fluctuant.

To address these issues, the reconciliation method [15] is pro-
posed, taking a two-stage approach: 1) independently forecast all
TS (generating incoherent base forecasts); 2) reconcile the base fore-
cast by applying forecast combination using a bottom-up procedure.
In other words, the base forecasts are modified for coherency. MinT
[56] is a typical example, which reconciles the base forecasts via the
optimal combination with minimum variance among all unbiased
revised forecasts.

Most previous works that reconcile forecasts of all TS to ensure
coherency, face the following challenges: (1) The base forecast is
obtained independently without any shared information from other
TS. (2) State-of-the-art methods rely on strong statistical assump-
tions, such as unbiased forecasts and Gaussian noises, but the data
distributions in real-world are mostly non-Gaussian/non-linear
across the hierarchy, which calls for a method that can transform
data into Gaussian space where tractable methods can be applied.
(3) The two-stage approaches reconcile the base forecast without
any regard to the learned model parameters and cannot utilize
deep parametric models that can share information between the
processes of prediction and reconciliation. (4)Most methods only
focus on generating point estimates, but probabilistic forecasts are
often necessary in practice to facilitate the subsequent decision-
making processes.

In this paper, we present a novel end-to-end approach, i.e., a
Flow-based Reconcile Transformer (FRT) that tackles forecasting
and reconciliation simultaneously for hierarchical TS and avoids
explicit post-processing steps. The recently popular autoregressive
transformer [20] and conditional normalizing flow (CNF) [27] are
combined to obtain coherent probabilistic forecasts.

Specifically, the base forecast via the autoregressive transformer
is firstly obtained, modeling the multivariate TS of all levels. Us-
ing an encoder-decoder transformer structure, which has been
successful in recent advances in multivariate TS forecasting [61],
the information fusion of all levels in the hierarchy via globally
shared parameters is achieved while benefiting from the represen-
tation power of the autoregressive transformer model. Transformer
models have also shown superior performance in capturing long-
range dependency than RNN-based models [58]. Second, the base
forecasts are reconciled into coherent forecasts via conditional nor-
malizing flow [27] with a bottom-up aggregation matrix. Due to the

complex probabilistic distributions in the hierarchical data, normal-
izing flow (NF), a proven powerful density approximator, becomes
our natural choice. By extending NF to the conditional case, base
forecasts from all levels can be incorporated as additional conditions
for the latent space, leveraging the information available across
all levels for reconciliation, while modeling the non-Gaussian dis-
tributions and non-linear correlations in the hierarchy to obtain
probabilistic forecasts. Finally, forecasting and reconciliation are
combined simultaneously for end-to-end training, while ensuring
continuity and differentiability at all steps. Moreover, our frame-
work accommodates different loss functions besides log-likelihood,
and by sampling from the forecasted distribution, sufficient sta-
tistics can be obtained via the empirical distribution to facilitate
complicated optimization objectives.

Our Contributions. We summarize the contributions of our pro-
posed Flow-based Reconcile Transformer (FRT) as follows:

• A novel reconcile transformer via conditional normalizing
flow with bottom-up aggregation matrix to model hierar-
chical TS, which integrates information of all levels in the
hierarchy for coherent probabilistic forecasting without re-
lying on any statistical assumption

• An end-to-end learning framework of hierarchical TS achiev-
ing forecasting and reconciliation simultaneously, without
requiring any explicit post-processing step

• A large-scale deployment at a world-leading payment com-
pany for data center workload forecasting to support its
cloud computing resource scheduling, along with extensive
experiments on real-world hierarchical datasets from various
industrial domains demonstrating the superior performance
of FRT.

In the following content, we introduce the involved background
and relatedwork in Section I and Section II.We then present our pro-
posed method and describe the procedure of training and inference
in Section III. Next, in Section IV, we analyze the non-Gaussian/non-
linear properties of real-world hierarchical data and demonstrate
the advantages of our approach through experiments and ablation
studies. Finally, in Section V, we have provided a detailed introduc-
tion to the application practices of FRT in large-scale deployments
at world-leading payment companies. It has now become a corner-
stone for workload forecasting in the company’s data centers.

2 Related Work
2.1 Hierarchical Time Series Forecasting
Existing hierarchical time series forecasting methods mainly fol-
low the two-stage approach: (i) Obtain each ℎ-period-ahead base
forecasts 𝒚̂𝑇+ℎ independently; (ii) Reconcile the base forecasts by
the reconciliation process (Equation 1) to obtain coherent forecasts
𝒚̃𝑇+ℎ . This approach has the following advantages: (1) The forecasts
are coherent by construction; (2) The combination of forecasts from
all levels is applied via the projection matrix 𝑷 , where information
from all levels of hierarchy is incorporated simultaneously. The
main work of the current state-of-the-art method is to improve the
reconciliation process, which will be reviewed in this section.

4996



FRT: Flow-based Reconcile Transformer for Hierarchical Time Series KDD ’25, August 3–7, 2025, Toronto, ON, Canada

The reconciliation process in hierarchical time series can be
represented as

𝑦𝑇+ℎ = 𝑺𝑷 ˆ𝑦𝑇+ℎ . (1)
where 𝑷 ∈ R𝑚×𝑛 is a matrix that projects the base forecasts (of
dimension 𝑛) into the bottom-forecast(of dimension𝑚), which is
then summed up by the aggregation matrix 𝑺 ∈ {0, 1}𝑛×𝑚 using
the aggregation structure to produce a set of coherent forecasts
𝑦𝑇+ℎ ∈ R𝑛 , which satisfy the aggregation constraints.

Wickramasuriya et al. [56] proposed MinT to optimally com-
bine the base forecasts. Specifically, assuming the base forecasts
𝑦𝑇+ℎ are unbiased, Mint computes the projection matrix as 𝑷 =

(𝑆𝑇𝑊 −1
ℎ

𝑆)−1 (𝑆𝑇𝑊 −1
ℎ

) giving the minimum variance unbiased re-
vised forecasts, i.e., minimizing 𝑡𝑟 [𝑆𝑃𝑊ℎ𝑃

𝑇 𝑆𝑇 ] with constraint
𝑆𝑃𝑆 = 𝑆 , where𝑊ℎ is the covariance matrix of the ℎ-period-ahead
forecast errors 𝜀𝑇+ℎ = 𝑦𝑇+ℎ − 𝑦𝑇+ℎ (𝑺 and 𝑷 are matrices defined
in eq. ( 1)). However, the covariance of errors𝑊ℎ is hard to obtain
for general ℎ and the strong assumption of unbiased base forecasts
is normally unrealistic.

The unbiased assumption is relaxed inRegularized Regression
for Hierarchical Forecasting [2], which also follows the two-
stage approach and seeks the revised forecasts with the trade-off
between bias and variance of the forecast by solving an empirical
risk minimization (ERM) problem.

Probabilistic Method for Hierarchical Forecasting [40, 51]
also employs the two-stage approach, but in contrast to the above
methods, it considers forecasting probability distributions rather
than just the means (point forecasts). This probabilistic method
starts by generating independent forecasts of the conditional mar-
ginal distributions, followed by samplings from the above distribu-
tions as the base forecasts, which are then reconciled using Equa-
tion 1. In this approach, existing reconciliation methods for point
forecasts can be extended to a probabilistic setting. However the
reconciliation is only applied to the samples rather than the fore-
cast distribution, which creates another level and uncertainty with
unsalable computation complexity.

One typical work in end-to-end modeling of hierarchical time
series is Hier-E2E [44], where base forecasts are obtained using
DeepVAR [46] with diagonal Gaussian distribution, followed by
reconciliation using a closed-form formulation of an optimization
problem, i.e., minimizing the errors of the base forecast 𝑦 and rec-
onciling forecast 𝑦 subject to coherent constraints of hierarchical
structure. The reconciliation process is as follows:

𝑦𝑡 = 𝑀𝑦𝑡

𝑀 := 𝐼 −𝐴𝑇 (𝐴𝐴𝑇 )−1𝐴 ,
where𝑀 is a fixed matrix and𝐴 is a structure matrix from the upper
half of the aggregated matrix. In contrast to the previous work, the
model no longer has a relationship with the predicted value 𝑦. The
matrix𝑀 is time-invariant and can be computed offline before the
training. This reconciliation approach is essentially a fine-tuning of
the base forecasts under the coherence constraint, and the learned
model parameters are not used to revise the base forecast in the
reconciliation stage.

Considering the pros and cons of the above models, we combine
the advantages and propose a novel end-to-end model that can not
only obtain coherent probabilistic forecasts but can also achieve

Figure 1: An illustration of resource scaling based on work-
load forecasting

the reconciliation in the forecast distributions (rather than just on
samples), ensuring that the reconciliation is related the predicted
value 𝑦 via integrating information from all levels, to improve the
overall performance.

2.2 Normalizing Flow
Normalizing flows (NF) [41], which learn a distribution by trans-
forming the data to samples from a tractable distributionwhere both
sampling and density estimation can be efficient and exact, have
been proven to be powerful density approximators. The change of
variables formula (Equation 2 below) empowers the computation
of exact likelihood [25], which is in contrast to other powerful
density estimator such as Variational Autoencoders or Generative
Adversarial Networks. Impressive estimation results, especially in
the field of nonlinear high-dimensional data generation, have led
to the great popularity of flow-based deep models [22, 53].

NF are invertible neural networks that typically transform isotropic
Gaussians to characterize a more complex data distribution. They
map from R𝐷 to R𝐷 such that densities 𝑝𝑌 on the input space
𝑌 ∈ R𝐷 are transformed into some tractable distribution 𝑝𝑍 (e.g.,
an isotropic Gaussian) on space 𝑍 ∈ R𝐷 . This mapping function,
𝑓 : 𝑌 → 𝑍 and inverse mapping function, 𝑓 −1 : 𝑍 → 𝑌 are com-
posed of a sequence of bijections or invertible functions, and we
can express the target distribution densities 𝑝𝑌 (𝒚) by

𝑝𝑌 (𝒚) = 𝑝𝑍 (𝒛) |𝑑𝑒𝑡 (
𝜕𝑓 (𝒚)
𝜕𝒚

) | , (2)

where 𝜕𝑓 (𝑦)/𝜕𝑦 is the Jacobian of 𝑓 at 𝑦. NF have the property
that the inverse 𝑦 = 𝑓 −1 (𝒛) is easy to evaluate and computing the
Jacobian determinant takes 𝑂 (𝐷) time.

For mapping functions 𝑓 , the bijection introduced by RealNVP
architecture (the coupling layer) [12] satisfies the above properties,
leaving part of its inputs unchanged, while transforming the other
part via functions of the un-transformed variables (with superscript
denoting the coordinate indices){

𝑦1:𝑑 = 𝑧1:𝑑

𝑦𝑑+1:𝐷 = 𝑧𝑑+1:𝐷 ⊙ 𝑒𝑥𝑝 (𝑠 (𝑧)1:𝑑 + 𝑡 (𝑧1:𝑑 )) , (3)
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where ⊙ is an element wise product, 𝑠 () is a scaling and 𝑡 () is a
translation function from R𝐷 ↦→ R𝐷−𝑑 , using neural networks. To
model a nonlinear density map 𝑓 (𝑥), a number of coupling layers,
mapping Y ↦→ Y∞ ↦→ ... ↦→ YK−∞ ↦→ YK ↦→ Z, are composed
together with unchanged dimensions.

Conditional Normalizing Flow. Inspired by the conditional ex-
tension of NF [27], with the conditional distribution 𝑝𝑌 (𝒚 |𝒉), we
realize that the scaling and translation function approximators
do not need to be invertible [27], which means we can make the
transformation dependant on condition 𝒉 ∈ R𝐻 . Implementing
𝑝𝑌 (𝒚 |𝒉) on 𝒉 is straight-forward: we concatenate ℎ to both the
inputs of the scaling and translation function approximators of
the coupling layers, i.e., 𝑠 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒛1:𝑑 ,𝒉)) and 𝑡 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒛1:𝑑 ,𝒉)),
which are modified to map R𝑑+𝐻 ↦→ R𝐷−𝑑 .

2.3 Workload Forecasting
The rapid expansion of cloud computing has significantly changed
the landscape of IT services, leading to an urgent need for efficient
resource management within cloud systems [35, 59]. As businesses
increasingly rely on cloud services, the ability to accurately predict
future workloads has become a cornerstone of effective resource
scheduling [33, 52]. This capability not only improves operational
efficiency but also ensures that resources are optimally allocated to
meet demand, thereby improving service quality [10, 11, 32].

In microservices architectures, one of the primary metrics for as-
sessing service capacity is Requests Per Second (RPS), which serves
as a vital indicator of workload intensity. Accurately forecasting RPS
is essential for anticipating future demands and planning resource
scaling accordingly. This need has prompted extensive research
into various workload forecasting methodologies.

Major cloud service providers have recognized the significance
of workload forecasting and have launched their own resource
scaling service frameworks. For instance, Google’s Autopilot [45]
leverages the Autoregressive Integrated Moving Average (ARIMA)
model [3], while Microsoft’s FIRM [43] employs historical statistical
methods to anticipate workload changes. Amazon’s AWS Autoscal-
ing incorporates advanced techniques such as DeepAR [47] and
DeepVar [46], a deep learning-based approach, to enhance forecast
accuracy. These diverse methodologies reflect the growing com-
plexity of cloud environments and the increasing importance of
tailored forecasting solutions for specific workloads [6, 26].

2.4 Resource Scaling
Resource scaling is a critical aspect of cloud computing that ad-
dresses the dynamic needs of applications and services (in the
Figure 1). As organizations increasingly rely on cloud infrastruc-
ture, the ability to adjust resources in real-time becomes essential
for maintaining performance and cost-efficiency. Autoscaling, a
key feature of cloud environments, allows for the automatic ad-
justment of computing resources, such as virtual machines (VMs)
or pods (containers hosting microservices), based on pre-defined
criteria like wordload levels and utilization rates. This capability
not only enhances operational efficiency by reducing the need for
manual intervention during workload fluctuations but also ensures
that resources are allocated optimally. By automatically scaling re-
sources up or down, businesses can better handle peak loads while

minimizing costs during periods of low demand, thus achieving a
balance between performance and expenditure.

3 Methodology
In this section, we detail our proposed Flow-based Reconcile Trans-
former (FRT) for coherent probabilistic forecasting.

3.1 Model
A schematic overview of our hierarchical end-to-end architecture
can be found in Figure 2.
3.1.1 All Levels Base Forecasts . First, we generate all-levels base
forecasts with the transformer. The encoder-decoder transformer
architecture has been highly successful in advancing the research on
multivariate TS forecasting, enabled by its multi-head self-attention
mechanism to capture both long- and short-term dependencies, and
can be further extended to have autoregressive properties by using
causal masking. These advantages motivate the use of multivariate
autoregressive transformer as our building block to better capture
patterns (e.g., trends and cycles) inside each TS. Note that the global
parameters of the transformer are shared across different TS to
exploit common patterns over the entire history.

We denote the entities of a hierarchical TS by 𝑦𝑡,𝑖 ∈ R for 𝑖 ∈
{1, 2, ..., 𝑛}, where 𝑡 is the time index.We consider TSwith 𝑡 ∈ [1,𝑇 ],
sampled from the complete history of our data, where for training
we split the sequence by some context window [1, 𝑡0) and prediction
window [𝑡0,𝑇 ]. We use 𝑥𝑡,𝑖 to denote time-varying covariate vectors
associated with each univariate TS 𝑖 at time step 𝑡 .

In the encoder-decoder transformer architecture, the encoder
embeds 𝒚1:𝑡0−1 and the decoder outputs the base forecast of all
levels as a condition for the density estimations over 𝒚𝑡0:𝑇 via a
masked attention module:

𝒄𝑡0 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒚1:𝑡0−1, 𝒙1:𝑡0−1);𝜃 )
𝒚̂𝑡 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒚𝑡0:𝑡−1, 𝒙𝑡0:𝑡−1), 𝒄𝑡0 ;𝜙) ,

(4)

where 𝜃 and 𝜙 are parameters of the transformer’s encoder and
decoder, respectively. These parameters are shared globally, achiev-
ing information fusion across all levels in the hierarchy to generate
the base forecasts 𝒚̂𝑡 .

During training, care has to be taken to prevent using informa-
tion in the future. Specifically, to ensure the autoregressive property
of the model, we employ a mask that reflects the causal direction
of the progressing time, i.e. to mask out future time points.

Note that, in our case, base forecasts 𝒚̂𝑡 do not directly corre-
spond to un-reconciled forecasts for the base series, but rather
represent predictions of unobserved latent states, which can be
used for subsequent density estimations. The transformer allows
the model to access any part of the historic TS regardless of tempo-
ral distance. It thus is potentially able to generate better condition
𝒉𝑡 ∈ R𝐻 for the subsequent density estimations.

3.1.2 Coherent Probabilistic Forecasts . Next, we describe how
to obtain the coherent probabilistic forecasts, given the base forecasts
described above from the autoregressive transformer.

To estimate the probability density of data (to obtain a probabilis-
tic forecast), one straightforward method is to use parameterized
Gaussian distribution, but as mentioned above, the real-world hier-
archical data are mostly non-Gaussian/non-linear. Equipped with
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Figure 2: Model Architecture. Sufficient statistics can be computed from the samples via the empirical distribution to facilitate
more complicated optimization objectives.

Figure 3: Training Stage. The red dashed line represents the
multivariate autoregressive transformer; Reconciliation via
conditional NF with bottom-up aggregation matrix is high-
lighted.

the powerful density approximator, normalizing flow (NF), we can
tackle this challenge, capturing the nonlinear relationships among
all levels in the hierarchy.

According to the definition of Equation 1, the reconciliation takes
a projection matrix 𝑷 ∈ R𝑚×𝑛 , projecting from the base forecasts
(of dimension 𝑛) into the bottom-forecasts (of dimension𝑚). In our
approach, this projection is replaced using conditional normalizing
flow (CNF), i.e., the conditional joint distribution 𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ), where
𝒉𝑡 is the condition (base forecasts 𝒚𝑡 in our case) and the current
𝒚̃𝑡 is the reconciled bottom-forecasts (of dimension𝑚).

In the Real-NVP architecture [12], we extend the method by
concatenating condition 𝒉𝑡 to both the inputs of the scaling and

translation function approximators of the coupling layers as fol-
lows: {

𝒚1:𝑑 = 𝒛1:𝑑

𝒚𝑑+1:𝐷 = 𝒛𝑑+1:𝐷 ⊙ 𝑒𝑥𝑝 (𝑠 (𝒛1:𝑑 ,𝒉) + 𝑡 (𝒛1:𝑑 ,𝒉)) , (5)

where 𝒛 is a noise vector sampled from an isotropic Gaussian, func-
tions 𝑠 (scale) and 𝑡 (translation) are usually deep neural networks,
which, as mentioned above, do not need to be invertible.

To obtain an expressive distribution representation, we can stack
K layers of conditional flow modules (Real-NVP), generating the
conditional distribution of the future sequences of all TS in the
hierarchy, given the past time 𝑡 ∈ [1, 𝑡0) and the covariates in
𝑡 ∈ [1,𝑇 ]. Specifically, it can be written as a product of factors (as
an autoregressive model):

𝑝𝑌 (𝒚̃𝑡0:𝑇 |𝒚1:𝑡0−1, 𝒙1:𝑇 ;𝜃, 𝜙,𝜓 ) =
𝑇∏

𝑡=𝑡0

𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ;𝜃, 𝜙,𝜓 ) , (6)

where 𝜃 and 𝜙 are parameters of the transformer and 𝜓 is the
parameter of conditional NF.

Then with the power of reparameterization trick [23], we can
generate directly a set of Monte Carlo samples from the above
conditional joint distribution 𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ) as the reconciled bottom
forecasts, e.g., [𝑦𝐷,𝑡 , 𝑦𝐸,𝑡 , 𝑦𝐹,𝑡 , 𝑦𝐺,𝑡 ] in Figure 2. According to Equa-
tion 4 (𝑦𝑡 = 𝑺𝑷𝑦𝑡 ), the bottom forecasts are multiplied by the
aggregation matrix 𝑆 to obtain the coherent probabilistic forecasts
𝒚̃𝑡 of all levels.

Our approach unifies prediction and reconciliation with deep
parametric models, facilitating information sharing in the process
described above via global parameters. Our reconciliation method
not only ensures hierarchical coherence constraints but also dy-
namically revises the base forecast by integrating information of
all levels, to improve the overall performance. Unlike the current
probabilistic method for hierarchical forecasting, we apply the pro-
jection matrix 𝑃 on the conditional joint distribution of CNF, rather
than samples of distribution. In other words, our model conducts
reconciliation in the forecast distribution rather than just sample
points, which makes the estimation exact and more efficient.
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Figure 4: Inferencing Stage. In the multi-step inference, the
dashed line indicates that the prediction output from the
previous step feeds the inference of the next step via masked
attention.

Moreover, our framework can accommodate different loss func-
tions besides log-likelihood, and by sampling from the forecast
distribution, we can also obtain sufficient statistics via the empirical
distribution to facilitate more complicated optimization objectives.

3.2 Training
The overall training process is shown in Figure 3. During train-
ing, our loss function is directly computed on the coherent fore-
cast samples. Specifically, given D, defined as a batch of TS 𝑌 :=
{𝑦1, 𝑦2, ..., 𝑦𝑇 }, and the associated covariates 𝑋 := {𝑥1, 𝑥2, ..., 𝑥𝑇 },
we can maximize the likelihood given by Equation 6 via Adam
optimizer [21], i.e.

L =
1

|D|𝑇
∏

𝑥1:𝑇,𝑦1:𝑇 ∈D

𝑇∏
𝑡=1

𝑝𝑌 (𝑦𝑡 |𝑦1:𝑡−1;𝑥1:𝑡 , 𝜃, 𝜙,𝜓 )

=
1

|D|𝑇
∏

𝑥1:𝑇,𝑦1:𝑇 ∈D

𝑇∏
𝑡=1

𝑝𝑌 (𝑦𝑡 |ℎ𝑡 , 𝜃, 𝜙,𝜓 )

, (7)

where the globally shared parameters (𝜃 , 𝜙) and 𝜓 are from the
transformer and the conditional NF modules, respectively.

Please note that we can easily obtain 𝜃 , 𝜙 , and𝜓 for other loss
functions such as quantile loss, CRPS (continuously ranked proba-
bility score) or any other metrics preferred in the forecasting com-
munity, as long as we can compute the sufficient statistics from the
Monte Carlo samples {𝑦𝑡 } via the empirical distribution function.

3.3 Inference
The overall inference process is shown in Figure 4. During the
inference, we can predict them using the autoregressive transformer
in a step-by-step fashion over the time horizon. Specifically, we first
generate the base forecasts 𝑦𝑡 using an autoregressive transformer
for one time step using the covariate vector 𝑥1:𝑡−1 and the observed
value 𝑦1:𝑡−1. Then we can incorporate base forecasts 𝒚̂𝑡 from all

levels into conditional NF as additional condition 𝒉𝑡 in the latent
space to model conditional joint distribution 𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ). Lastly, we
directly obtain a set of Monte Carlo samples from the distribution
𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ) as the reconciled bottom forecasts, which are multiplied
by the aggregation matrix 𝑆 to obtain the coherent probabilistic
forecasts 𝒚̃𝑡 .

Note that we can repeat the above procedure for the ℎ-period-
ahead forecasting to obtain a set of coherent forecasts { ˜𝑦𝑇 , ˜𝑦𝑇+1, ..., ˜𝑦𝑇+ℎ}.

4 Experiments
In this section, we conduct extensive empirical evaluations on four
real-world hierarchical datasets from different industrial domains,
including three public datasets and one dataset collected from the
application servers of our company.

4.1 Datasets and Baselines
The three public datasets include Tourism [4], Tourism-L [56], and
Traffic [7]. The new dataset is the service-workload TS data col-
lected from our company’s application servers, where our method
is deployed for data traffic forecasting. We conduct the performance
comparison against state-of-the-art reconciliation algorithms in-
cluding MinT [56], ERM [2], and Hier-E2E [44], along with other
classical baselines, including bottom-up (NaiveBU) approach that
generates univariate point forecasts for the bottom-level time se-
ries independently followed by the aggregation according to the
coherent constraints to obtain point forecasts for the aggregated se-
ries. We extensively compare the well-acknowledged and advanced
time series forecasting models, which can be divided into three
categories as a whole (correspond to the three rows in Table 1),
namely classical statistical methods (including ARIMA, ETS [17]),
deep point prediction methods (including LSTM [14], TFT [29],
N-BEATS [39], N-HiTS [5], Transformer, Reformer [24], LogTrans
[28], Informer [61], Autoformer [58], Fedformer [62], TimesNet
[57], PatchTST [37], iTransformer [30], TimeMixer [54]),and deep
probability prediction methods (including DeepAR [47], DeepVAR
[46], Hier-E2E [44]). The details about datasets and implementation
are provided in the Appendix A, B.

4.2 Evaluation Metrics
Considering that our method generates probabilistic forecasts in-
stead of point forecasts, it is necessary to evaluate the correspond-
ing probabilistic accuracy with proper metrics, but commonly-used
Mean Absolute Error (MAE) or Mean Absolute Percent Error (MAPE)
cannot be directly used for this purpose. On the other hand, Con-
tinuous Probability Ranked Score (CRPS)[34] generalizes the MAE
for probabilistic measurement, making it one of the most widely
used accuracy metrics for probabilistic forecasts (including Hier-
E2E[44], DeepVAR[46], PROFHIT[19], SHARQ[13], DPMN[38], and
TDProb[9], etc.), which is adopted in our evaluation stage, to mea-
sure the compatibility of a cumulative distribution function 𝐹−1

𝑡,𝑖

for TS 𝑖 against the ground-truth observation 𝑦𝑡,𝑖 , to estimate the
accuracy of our forecast distributions. CRPS can be defined as

𝐶𝑅𝑃𝑆 (𝐹𝑡 , 𝑦𝑡 ) :=
∑︁
𝑖

∫ 1

0
𝑄𝑆𝑞 (𝐹−1𝑡,𝑖 (𝑞), 𝑦𝑡,𝑖 ) 𝑑𝑞 , (8)
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where 𝑄𝑆𝑞 is the quantile score for the 𝑞-th quantiles:

𝑄𝑆𝑞 = 2(1{𝑦𝑡,𝑖 ≤ 𝐹−1𝑡,𝑖 (𝑞)} − 𝑞) (𝐹−1𝑡,𝑖 (𝑞) − 𝑦)

We use the discrete version in our experiment, with the integral in
Equation 8 replaced by the weighted sum over the quantile set, and
we use the quantiles ranging from 0.05 to 0.95 in steps of 0.05.

4.3 Experiment Results
Main Results. As illustrated in the table 1, our Flow-based Rec-
onciliation Transformer (FRT) achieves significant performance
enhancements over more than 25 advanced baseline models
across four datasets, notably achieving an improvement ex-
ceeding 40% on the Server-Workload dataset. Furthermore,
confidence levels have been calculated, surpassing 95% across
all datasets. This thoroughly underscores the superiority of our
approach, particularly when juxtaposed with traditional statistical
methods, whereby we realize a leapfrog advancement.

We can also observe that the performance of traditional classical
statistical methods is far inferior to the deep learning models based
on Transformer or RNN. With the help of neural networks, we not
only achieve the best results but also avoid strong assumptions,
such as unbiased estimates or Gaussian distribution, of traditional
statistical models.

Additional Results. We compared our techniques to those dis-
cussed in five recently published papers that do not provide code in-
cluding PROFHIT[19], SHARQ[13], DPMN[38], TDProb[9], HIRED[42]
in Table 2. According to the results on the Tourism-L dataset re-
ported in the paper PROFHIT, SHARQ, DPMN, TDProb, HIRED,
and the results of DPMN and TDProb on the Traffic dataset, our
method achieves significant improvements comparedwith the latest
methods mentioned above.

4.4 Ablation Study
To further demonstrate the effectiveness of our model, we conduct
ablation studies using the variant of our model and the related
models. The results of each aggregation level are shown in Figure
5. In FRT-NaiveBU, we use the FRT without reconciliation to
generate the bottom levels forecasts, then use the above NaiveBU
method to ensure coherency, which aggregates according to the
hierarchical structure. This method serves as a comparison to prove
the efficacy of our proposed flow-based reconciliation.

DeepVAR-lowrank-copula is an RNN-based model using the
low-rank Gaussian coupla [46] and Autoregressive Transformer
is an encoder-decoder transformer-based architecture [20], enabled
by its multi-head self-attention mechanism to capture both long-
and short-term dependencies in TS data. Hier-E2E is the end-to-
end model combing DeepVAR (Gaussian distribution) and projec-
tion matrix [44].

Transformer-based models outperform RNN-based ones, espe-
cially in upper-level TS. The transformer allows access to any part
of the historic data regardless of temporal distance and is thus ca-
pable of generating better conditioning for NF head, as evidenced
by our experiments.

The non-Gaussian data distribution and nonlinear correlations
attest to the need for more expressive density estimators, i.e., CNF,

Figure 5:MeanCRPS scores (lower is better) of all aggregation
levels in the Tourism, Traffic datasets.

which makes our approach significantly outperform other methods,
especially in the bottom-level TS.

In summary, (1) As shown in Figure 5, we can observe the
improvement achieved by using only the Transformer com-
ponent (FRT-NavieBU ) for prediction, demonstrating the ne-
cessity to adopt Transformer architecture. (2) Furthermore, we
achieve significant improvements in low-level TS in FRT with CNF,
which confirms the analysis of the non-Gaussian/nonlinear
characteristics of the bottom-level TS in our motivation.

4.5 Model Efficiency
We analyze model efficiency in terms of both model size and run-
ning time. We measured both items for the main methods on the
Tourism dataset and presented the results in Table 3. By combin-
ing the performance comparison in Table 1 with the efficiency
comparison in Table 3, our approach outperforms the other meth-
ods while maintaining comparable efficiency. Moving forward, we
will continue to explore more model architectures to enhance the
model’s efficiency. More model efficiency analysis is provided in
Appendix C.2.

5 Deployed Application
The method proposed in this paper has been successfully deployed
in a world-leading payment technology company for workload
forecasting across different services in its data centers, supporting
the scheduling and scaling of its cloud computing resources. This
corporation depends on an extensive array of application servers
to underpin its complex online financial activities, which are dis-
tributed across various Internet Data Centers (IDCs) that constitute
the computational backbone. Enhancing the efficiency of resource
utilization necessitates the preemptive scheduling of application
services, which in turn demands precise predictions of workload to
inform resource management strategies.

In our company’s IDC, the deployment of application services
in each IDC follows a hierarchical structure. Specifically, as shown
in the Figure 6, each service has four levels in the deployment
and workload traffic distribution within the IDC. The first level
is the overall workload traffic. The second level involves deploy-
ment to different cities (e.g., Shanghai, Hangzhou, Shenzhen, etc.).
The third deployment level is the zone (our company divides each
city’s IDC into different virtual data centers, which we refer to as
zones, allowing for more granular deployment). The final level
is the specific deployment pods (containers hosting services)) for
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Table 1: CRPS values (lower is better) averaged over 5 runs. We conducted the ablation study on FRT-NaiveBU. SOTA methods
based on ARIMA and ETS produce consistent results over multiple runs, and thus, we have not presented their standard
deviation.

Method Traffic Tourism Tourism-L Service-Workload

ARIMA-NaiveBU 0.0808 0.1138 0.1741 0.3834
ETS-NaiveBU 0.0665 0.1008 0.1690 0.3899
ARIMA-MinT-shr 0.0770 0.1171 0.1609 0.2713
ARIMA-MinT-ols 0.1116 0.1195 0.1729 0.2588
ETS-MinT-shr 0.0963 0.1013 0.1627 0.3472
ETS-MinT-ols 0.1110 0.1002 0.1668 0.2652
ARIMA-ERM 0.0466 0.5887 0.5635 0.2320
ETS-ERM 0.1027 2.3755 0.5080 0.2501

LSTM-NaiveBU 0.1029 ± 0.0017 0.1251 ± 0.0029 0.2035 ± 0.0022 0.2578 ± 0.0016
TFT-NaiveBU 0.0954 ± 0.0011 0.1093 ± 0.0031 0.1857 ± 0.0017 0.1580 ± 0.0007
N-BEATS-NaiveBU 0.0703 ± 0.0021 0.1062 ± 0.0011 0.1912 ± 0.0019 0.1213 ± 0.0027
N-HITS-NaiveBU 0.0591 ± 0.0023 0.0962 ± 0.0015 0.1579 ± 0.0021 0.1105 ± 0.0015
Transformer-NaiveBU 0.0621 ± 0.0029 0.1102 ± 0.0013 0.1877 ± 0.0031 0.1121 ± 0.0008
Reformer-NaiveBU 0.0633 ± 0.0024 0.1015 ± 0.0015 0.1734 ± 0.0010 0.1138 ± 0.0009
LogTrans-NaiveBU 0.0614 ± 0.0016 0.1073 ± 0.0020 0.1652 ± 0.0013 0.1146 ± 0.0022
Informer-NaiveBU 0.0571 ± 0.0018 0.0911 ± 0.0011 0.1601 ± 0.0012 0.1101 ± 0.0034
Autoformer-NaiveBU 0.0384 ± 0.0029 0.0803 ± 0.0016 0.1342 ± 0.0011 0.0723 ± 0.0028
Fedformer-NaiveBU 0.0352 ± 0.0020 0.0755 ± 0.0017 0.1307 ± 0.0011 0.0671 ± 0.0021
TimesNet-NaiveBU 0.0378 ± 0.0007 0.0702 ± 0.0010 0.1392 ± 0.0007 0.0707 ± 0.0012
PatchTST-NaiveBU 0.0405 ± 0.0019 0.0775 ± 0.0007 0.1271 ± 0.0021 0.0655 ± 0.0020
iTransformer-NaiveBU 0.0342 ± 0.0003 0.0711 ± 0.0019 0.1248 ± 0.0009 0.0559 ± 0.0011
TimeMixer-NaiveBU 0.0337 ± 0.0005 0.0708 ± 0.0001 0.1286 ± 0.0013 0.0541 ± 0.0012

DeepAR-NaiveBU 0.0574 ± 0.0026 0.1023 ± 0.0019 0.1816 ± 0.0088 0.1136 ± 0.0073
DeepVAR-lowrank-Copula 0.0583 ± 0.0071 0.0991 ± 0.0083 0.1781 ± 0.0093 0.1125 ± 0.0041
Hier-E2E 0.0376 ± 0.0060 0.0834 ± 0.0052 0.1520 ± 0.0032 0.0530 ± 0.0012
FRT(𝑶𝒖𝒓𝒔) 0.0217 ± 0.0055 0.0611 ± 0.0077 0.1135 ± 0.0059 0.0314 ± 0.0067
FRT-NaiveBU 0.0377 0.0815 0.1471 0.0417
Confidence 95% 99% 99% 99%

Table 2: CRPS values (lower is better) compared to new base-
lines. The results are cited from the original papers. The ‘-’
symbol indicates that the original paper does not report re-
sults on the dataset.

Method Tourism-L Traffic

PROFHIT 0.12 -
SHARQ 0.17 -
DPMN 0.1249 ± 0.0020 0.0704 ± 0.0014
TDProb 0.137 0.0575 ± 0.0006
HIRED 0.186 -

FRT(Ours) 0.1135 ± 0.0059 0.0217 ± 0.0055

Table 3: Model efficiency comparison including model size
(parameter) and running time (seconds).

Method Parameter (MB) Running Time (s)

Hier-E2E 2.152 0.49
DeepVAR 1.985 0.47
TFT-BU 2.587 0.62

Informer-BU 1.903 0.51
Autoformer-BU 1.848 0.48
Fedformer-BU 2.901 0.98
FRT(Ours) 1.910 0.45

each service. When the workload traffic for each application ser-
vice arrives, it is distributed through the load balancing system
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Figure 6: A deployment example of our company’s different
service in IDC.

to different cities, then to different zones within those cities, and
finally reaches each deployment unit. This hierarchical deployment
allows for mutual disaster recovery between different cities and
zones, enabling a response to unexpected situations.

Additionally, the Figure 7 presented herein illustrates an analysis
of real service-workload data obtained from our company’s IDC.
We employed workload TS data from three distinct service cate-
gories—namely, web services, database services, and AI inference
services and utilized Seaborn to visualize the relationships within
varying levels of the service-workload dataset.

Figure 7: The diagonal plots are each univariate time series’
distributions (histograms). Plots outside of the diagonal are
scatterplots analyzing the correlation between the two time
series. The different colors represent the different types of
services.

The above figure demonstrates not only the non-Gaussian distri-
bution of data but also the nonlinear relationship between data at
different levels.

As shown in Table 1, our approach demonstrates a remarkable
improvement over the current SOTA techniques in HTS forecast-
ing. Our method achieves a relative improvement of up to
40% compared to the baseline models in online deployment.
Figure 8 presents an example of using FRT for workload predic-
tion in an IDC to achieve cloud computing resource scaling. By
accurately predicting workloads across different services within
the hierarchical structure of the IDC, we achieved precise resource
scaling, enabling efficient configuration of cloud computing re-
sources and significantly increasing their utilization rate. After
activating our FRT prediction technology, the number of pods
(containers hosting microservices) used by the microservices
significantly decreased from over 1000 to below 300 (a reduc-
tion in resource consumption of over 70%), greatly enhancing
resource efficiency. More details of deployment are provided in
Appendix D.

Figure 8: Blue vertical dotted line indicates the launch of
resource scaling based on workload forecasting. Green frame
highlights the comparison of the metrics under the same
workload before and after enabling our method.

6 Conclusion
In this paper, we propose a novel end-to-end approach (FRT) that
conducts forecasting and reconciliation simultaneously for HTS.
FRT generates coherent probabilistic forecasts without explicit
post-processing steps, by combining autoregressive transformer and
conditioned normalizing flow. We conducted extensive evaluations
on real-world datasets, demonstrating the competitiveness of our
method under various conditions against other state-of-the-art
methods. We have also successfully deployed FRT in real-world
applications as a continuous and robust forecasting service for pre-
dicting server traffic, thereby promoting energy efficiency. Note
that the FRT has been extensively deployed within our company,
acting as the pivotal model for workload forecasting across IDC,
thereby bolstering the predictive service capabilities of the entire
data center infrastructure. Owing to the precision of our model’s
predictive capabilities, we have facilitated the efficient allocation
of data center resources, culminating in substantial resource con-
servation.
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A Datasets Details
Three real-world hierarchical datasets and a dataset of the workload
TS data from application services of our company are listed below
for our experiments:

• Traffic [7] provides the occupancy rate (between 0 and 1)
of 963 car lanes of San Francisco bay area freeways. We
aggregate sub-hourly data to obtain daily observations for
one year and generate a 207-series hierarchy using the same
aggregation strategy as in [2], which is divided into 4 levels.
Bottom-level contains 200 series, aggregated-levels contain
7 series in total, and the prediction length is 1.

• Tourism [1, 4] includes an 89-series geographical hierarchy
with quarterly observations of Australian tourism flows from
1998 to 2006, which is divided into 4 levels. Bottom-level con-
tains 56 series, aggregated-levels contain 33 series, and the
prediction length is 8. This dataset is frequently referenced
in hierarchical forecasting studies [16, 50].

• Tourism-L [56] is a larger, more detailed version of Tourism,
which contains 555 total series in a grouped structure and
228 observations; This dataset has two hierarchies, i.e., based
on geography and based on purpose-of-travel, respectively,
sharing a common root, which is divided into 4 or 5 lev-
els. Bottom-level contains 76 or 304 series, aggregated-level
contains 175 series, and the prediction length is 12.

• Service-Workload: The workload TS dataset is the request
per second (RPS) from our company’s online microservices,
which is a large-scale dataset containing 1,589 time series.
Each point is aggregated and sampled every 10 minutes. The

dataset is compiled from the past three years of historical
data.

B Implementation Details
B.1 Module Architecture
We adopt multi-head attention as the encoder and masked multi-
head attention as decoder in encoder-decoder transformer archi-
tecture, where uses the H = 8 heads and n = 3 encoding and m
= 3 decoding layers and a dropout rate of 0.1. In conditioned NF
modules, we employ Real-NVP with 3 layers of flow modules to
map data sampled from Gaussian distribution to target distribution.
In the sampling stage, we generate the 500 Monte Carlo samples
from the predicted distribution.

B.2 Hyper-parameter Setting
We conduct experiments on four real-world datasets, where the
train/test set by 0.8 at the timeline, where the preceding segments
are used for training and the following ones are for testing. We also
split 10% samples from the train set as the validation set to avoid
overfitting. Batch size of 128 is used for training for 100 epochs in
total, starting with a learning rate of 0.001 and reduced by a factor
of 10 at every 20 iterations. The complete code of our approach will
be released upon the internal approval.

B.3 Experiment Environment
All experiments were conducted on a Linux server operating with
the Ubuntu 16.04 distribution. The server was equipped with an
Intel(R) Xeon(R) Silver 4214 processor, which boasts a base clock
speed of 2.20GHz. Additionally, the system was configured with
64GB of RAM, providing ample memory resources to facilitate
the processing requirements of the experiments. For AI inference
tasks, the server was outfitted with 8 Nvidia A-100 GPU, which is
renowned for its advanced capabilities in handling intensive com-
putational workloads. This hardware configuration was carefully
selected to ensure optimal performance and efficiency during the
execution of experimental protocols.

C More Analysis
C.1 Hyperparameter sensitivity
We conducted a sensitivity analysis on three key sets of hyperpa-
rameters—encoder layers, decoder layers, and Real-NVP lay-
ers—using the service-workload dataset. The results of this analysis
are summarized in Table 4.

From the table, it is evident that the best performance, as mea-
sured by the Continuous Ranked Probability Score (CRPS), is achieved
when each of the three sets of hyperparameters is set to 3. Specif-
ically, the CRPS values for encoder layers, decoder layers, and
Real-NVP layers are 0.0321, 0.0329, and 0.0311, respectively, at this
configuration. Further increases in the number of layers do not
significantly enhance performance and instead result in additional
computational overhead.

Therefore, based on these results, we selected this set of hyper-
parameters (3 encoder layers, 3 decoder layers, and 3 Real-NVP
layers) as the optimal configuration for our workload forecasting
model.
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Table 4: Hyperparameter Sensitivity Analysis Results

Encoder Layers CRPS Decoder Layers CRPS Real-NVP Layers CRPS
1 0.0351 1 0.0412 1 0.0390
2 0.0347 2 0.0344 2 0.0332
3 0.0321 3 0.0329 3 0.0311
4 0.0337 4 0.0329 4 0.0318

Table 5: Efficiency Analysis of Different Models

Method GPU Memory (MB) Running Time (s) Parameter (MB) Performance (CRPS)
Hier-E2E 1447 2.34 121 0.0530
TFT-BU 2047 1.89 141 0.1580
Informer-BU 2982 2.42 192 0.1101
Autoformer-BU 2871 1.92 174 0.0723
FRT (Ours) 1426 1.69 112 0.0314

C.2 More Efficiency Analysis
To evaluate the effectiveness and efficiency of our proposed method,
we conducted a comparison in our actual production environment.
The comparison included our FRT model, Google’s TFT, Amazon’s
Hier-E2E, and transformer-basedmodels such as Informer andAuto-
former. These tests were performed on traffic time series forecasting
for over 1,589 sets of web services.

As shown in Table 5, our method (FRT) demonstrates superior
performance in practical application deployments while maintain-
ing commendable efficiency. Specifically, FRT achieves the best
performance in terms of CRPS (0.0314), while also requiring the
least GPU memory (1,426 MB), the shortest running time (1.69 sec-
onds), and fewer parameters (112 MB). This combination of high
effectiveness and efficiency makes FRT particularly advantageous
for large-scale industrial applications.

D Deployment Details
Our company’s cloud computing cluster management system is
built upon the proprietary Sigma framework, which functions
similarly to Kubernetes by providing unified containermanagement.
This system is designed to handle the complexities of managing and
scheduling resources across a large-scale cloud environment. As
an online resource scheduling platform, it integrates our proposed
workload forecasting method to predict workload fluctuations for
individual microservices. These predictions enable the system to
allocate resources optimally, ensuring both high efficiency and
cost-effectiveness.

To meet the high demands of forecasting workloads for a vast ar-
ray of microservices, our solution is deployed across a robust infras-
tructure consisting of 100 Linux servers, each running Ubuntu
16.04. These servers are powered by Intel(R) Xeon(R) Silver 4214
2.20GHz CPUs and equipped with 64GB of memory. This con-
figuration is capable of supporting over 3000 QPS (queries per
second) of prediction request traffic during peak periods, such as
the Double Eleven shopping festival. This demonstrates the scalabil-
ity and performance of our system under extreme traffic conditions.

Each of our online prediction servers is further equipped with an
NVIDIA A-10 GPU to accelerate inference services. These GPUs
ensure that prediction requests are processed with low latency,
meeting the stringent requirements of real-time resource sched-
uling. In addition, our system is designed to handle the dynamic
nature of workload patterns, which necessitates regular updates
to the forecasting models. To address this, we schedule weekly
model update training sessions using NVIDIA A-100 80GB
GPUs, which are specifically chosen for their high performance in
large-scale machine learning tasks. These updates are crucial for
maintaining the accuracy and reliability of the forecasting models
over time.

Over the past three years, our proposed workload forecasting
method has undergone continuous iteration and optimization. It
has been seamlessly integrated into our company’s resource sched-
uling system and has demonstrated exceptional stability in produc-
tion environments. The system has successfully passed multiple
stress tests, including several Double Eleven promotions, which are
known for their extreme traffic spikes and high demands on system
performance. These real-world tests have effectively validated the
robustness, scalability, and reliability of our solution.

Furthermore, the integration of our forecasting method into the
Sigma framework has not only improved resource utilization but
also reduced operational costs byminimizing over-provisioning and
under-provisioning of resources. This has had a significant impact
on the overall efficiency of our cloud computing infrastructure,
enabling the system to adapt dynamically to changing workloads
while maintaining service-level agreements (SLAs).

In summary, our deployment strategy combines cutting-edge
hardware, efficient resource management frameworks, and a scal-
able forecasting solution to deliver a highly reliable and performant
system. This ensures that our cloud infrastructure remains robust
and efficient, even during peak operational periods, and highlights
the practical value of our proposed method in real-world applica-
tions.
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