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Temporal Interaction Network

@ It is also known as Continuous-Time Dynamic Graph (CTDG)
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Dynamic Graph Representation Learning
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Dynamic Graph Representation Learning
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Challenges

@ The entangled spatial and temporal dependencies in real-world dynamic
graphs need a specific paradigm to model

@ Temporal events in CTDGs occur irregularly, resulting in a significant
challenge in modeling temporal dependencies
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Neural Temporal Walks

o Dynamic graph motifs abstract important dynamic laws in a dynamic graph

e Temporal walks:
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Dynamic law: Two nodes that interact with a common
temporal neighbor tend to be connected in the future
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Neural Temporal Walks

@ Motif extraction: We consider not only temporal but also spatial constrains
when sampling walks

A dynamic graph with timestamped edges and a queried interaction N7 N6 N 5 6 5 2
at a specific time :@ : @
s My /I M"
R EEEE
§_|/ (A TIAC PN
7 5 ) 6 5 4
O©—0=0-0 O>0>0-0
' 1
1
] 1
O Root node —> Temporal-biased walk —> i biasedwalk | |[\_____ A _(l_w’_‘) ______ ! AM,)
—> spati biased walk with ion & exploitation trade-off N ized node Anonymization operation
(a) Dynamic Graph Motif Extraction (b) Walk Anonymization

@ We also consider tree traversal properties to avoid sampling too much
homogeneous motifs
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Neural Temporal Walks

o Motif encoding: Interleaving the continuous evolution and instantaneous
activation processes to learn the underlying spatiotemporal dynamics

/" Encode an anonymized temporal walk W: N
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o We aggregate the embedding of surrounding motifs as the representation of a
temporal node or an interaction
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Batching for Scalability

@ We employ a “substitute variable” trick

A batch of length-1 anonymized temporal walks
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Time Interval Normalization

@ We consider logarithmic transformations to make the solving tractable
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@ On six real-world dynamic graphs, our method significantly and constantly
outperforms state-of-the-art methods

e E.g., it surpasses the strongest baseline by up to 8% in transductive or
inductive temporal link prediction tasks

@ Our walk sampling and encoding techniques bring around 3% and 5%
improvements over the best available solutions

@ Our method maintains good interpretability by learning motif-aware
representations
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